Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39183565

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a devastating condition characterized by progressive lung scarring and uncontrolled fibroblast proliferation, inevitably leading to organ dysfunction and mortality. While elevated iron levels have been observed in patients and animal models of lung fibrosis, the mechanisms linking iron dysregulation to lung fibrosis pathogenesis, particularly the role of macrophages in orchestrating this process, remain poorly elucidated. Here we evaluate iron metabolism in macrophages during pulmonary fibrosis using both in vivo and in vitro approaches. In murine bleomycin- and amiodarone-induced pulmonary fibrosis models, we observed significant iron deposition and lipid peroxidation in pulmonary macrophages. Intriguingly, the ferroptosis regulator glutathione peroxidase 4 (GPX4) was upregulated in pulmonary macrophages following bleomycin instillation, a finding corroborated by single-cell RNA sequencing analysis. Moreover, macrophages isolated from fibrotic mouse lungs exhibited increased transforming growth factor (TGF)-ß1 expression that correlated with lipid peroxidation. In vitro, iron overload in bone marrow-derived macrophages triggered lipid peroxidation and TGF-ß1 upregulation, which was effectively suppressed by ferroptosis inhibitors. When co-cultured with iron-overloaded macrophages, lung fibroblasts exhibited heightened activation, evidenced by increased α-smooth muscle actin and fibronectin expression. Importantly, this pro-fibrotic effect was attenuated by treating macrophages with a ferroptosis inhibitor or blocking TGF-ß receptor signaling in fibroblasts. Collectively, our study elucidates a novel mechanistic paradigm in which the accumulation of iron within macrophages initiates lipid peroxidation, thereby amplifying TGF-ß1 production, subsequently instigating fibroblast activation through paracrine signaling. Thus, inhibiting iron overload and lipid peroxidation warrants further exploration as a strategy to suppress fibrotic stimulation by disease-associated macrophages.

2.
Lung ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164594

RESUMO

The pulmonary lymphatic system has emerged as a critical regulator of lung homeostasis and a key contributor to the pathogenesis of respiratory diseases. As the primary conduit responsible for maintaining fluid balance and facilitating immune cell trafficking, the integrity of lymphatic vessels is essential for preserving normal pulmonary structure and function. Lymphatic abnormalities manifest across a broad spectrum of pulmonary disorders, underscoring their significance in respiratory health and disease. This review provides an overview of pulmonary lymphatic biology and delves into the involvement of lymphatics in four major lung diseases: chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), asthma, and lung transplant rejection. We examine how lymphatic abnormalities manifest in each of these conditions and investigate the mechanisms through which lymphatic remodeling and dysfunction contribute to disease progression. Furthermore, we explore the therapeutic potential of targeting the lymphatic system to ameliorate these debilitating respiratory conditions. Despite the current knowledge, several crucial questions remain unanswered, such as the spatial and temporal dynamics of lymphatic changes, the molecular crosstalk between lymphatics and the lung microenvironment, and the distinction between protective versus detrimental lymphatic phenotypes. Unraveling these mysteries holds the promise of identifying novel molecular regulators, characterizing lymphatic endothelial phenotypes, and uncovering bioactive mediators. By harnessing this knowledge, we can pave the way for the development of innovative disease-modifying therapies targeting the lymphatic highway in lung disorders.

3.
COPD ; 21(1): 2322605, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38591165

RESUMO

Chronic obstructive pulmonary disease (COPD) is a chronic respiratory condition characterized by persistent inflammation and oxidative stress, which ultimately leads to progressive restriction of airflow. Extensive research findings have cogently suggested that the dysregulation of essential transition metal ions, notably iron, copper, and zinc, stands as a critical nexus in the perpetuation of inflammatory processes and oxidative damage within the lungs of COPD patients. Unraveling the intricate interplay between metal homeostasis, oxidative stress, and inflammatory signaling is of paramount importance in unraveling the intricacies of COPD pathogenesis. This comprehensive review aims to examine the current literature on the sources, regulation, and mechanisms by which metal dyshomeostasis contributes to COPD progression. We specifically focus on iron, copper, and zinc, given their well-characterized roles in orchestrating cytokine production, immune cell function, antioxidant depletion, and matrix remodeling. Despite the limited number of clinical trials investigating metal modulation in COPD, the advent of emerging methodologies tailored to monitor metal fluxes and gauge responses to chelation and supplementation hold great promise in unlocking the potential of metal-based interventions. We conclude that targeted restoration of metal homeostasis represents a promising frontier for ameliorating pathological processes driving COPD progression.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Humanos , Cobre/uso terapêutico , Pulmão , Estresse Oxidativo , Ferro/uso terapêutico , Zinco/uso terapêutico
4.
Chin Herb Med ; 15(1): 86-93, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36875432

RESUMO

Objective: To examine the protective effects of hydroxysafflor yellow A (HSYA) against the senescence of mesenchymal stem cells (MSCs) induced by d-galactose (d-gal) in vitro, and investigate the potential mechanism involved. Methods: Grouping experiment, Normal control (NC) group: conventional culture with complete medium; Senescence group: MSCs were cultured for 48 h with complete medium containing 10 g/L d-gal; HSYA group: on the basis of senescence induction, HSYA with the suitable concentration was used to protect MSCs. The key experimental indices associated with oxidative stress, inflammatory response, cell senescence, proliferation and apoptosis were measured through chemical colorimetry, ß-galactosidase staining, EdU incorporation and flow cytometry, respectively. The relative quantity (RQ) of proteins related closely to cell proliferation, apoptosis, and NF-κB signaling were measured by Western blotting. Results: As compared with Senescence group, treatment with HSYA (120 mg/L) effectively ameliorated the adverse situation of MSCs. Oxidation stress and inflammation along with d-Gal induction was dramatically alleviated in MSCs; The ß-Gal-positive staining indicated that MSC senescence was significantly mitigated; The proliferative capability of MSCs was significantly increased by up-regulating PCNA and inhibiting p16 expression; The anti-apoptotic effect on MSCs was exerted by down-regulating the RQ of cleaved Caspase-3 and Bax; The activity of NF-κB signaling in MSCs was notably suppressed through inhibiting phosphorylation of IKKß and p65. Conclusion: HSYA (120 mg/L) significantly delayed the d-Gal-induced senescence process in MSCs through attenuating inflammatory reaction and oxidative stress, and suppressing the activity of NF-κB signaling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA