Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 293
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
mLife ; 3(1): 143-155, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38827516

RESUMO

In the classical microbial isolation technique, the isolation process inevitably destroys all microbial interactions and thus makes it difficult to culture the many microorganisms that rely on these interactions for survival. In this study, we designed a simple coculture technique named the "sandwich agar plate method," which maintains microbial interactions throughout the isolation and pure culture processes. The total yield of uncultured species in sandwich agar plates based on eight helper strains was almost 10-fold that of the control group. Many uncultured species displayed commensal lifestyles. Further study found that heme was the growth-promoting factor of some marine commensal bacteria. Subsequent genomic analysis revealed that heme auxotrophies were common in various biotopes and prevalent in many uncultured microbial taxa. Moreover, our study supported that the survival strategies of heme auxotrophy in different habitats varied considerably. These findings highlight that cocultivation based on the "sandwich agar plate method" could be developed and used to isolate more uncultured bacteria.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38728178

RESUMO

A Gram-negative, facultative anaerobic, non-motile and rod-shaped bacterium, designated 10c7w1T, was isolated from a human gastrointestinal tract. Colonies on agar plates were small, circular, smooth and beige. The optimal growth conditions were determined to be 37 °C, pH 7.0-7.5 and 0 % (w/v) NaCl. Comparative analysis of complete 16S rRNA gene sequences revealed that strain 10c7w1T showed the highest sequence similarity of 95.8 % to Ottowia beijingensis MCCC 1A01410T, followed by Ottowia thiooxydans (95.2 %) JCM 11629T. The average amino acid identity values between 10c7w1T and O. beijingensis MCCC 1A01410T and O. thiooxydans JCM 11629T were above 60 % (71.4 and 69.5 %). The average nucleotide identity values between strain 10c7w1T and O. beijingensis MCCC 1A01410T and O. thiooxydans JCM 11629T were 76.9 and 72.5 %, respectively. The dominant fatty acids (≥10 %) were straight chain ones, with summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c), summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c) and C16 : 00 being the most abundant. Q-8 was the only respiratory quinone. The major polar lipids of strain 10c7w1T were phosphatidylethanolamine, diphosphatidylglycerol and unknown lipids. The DNA G+C content of strain 10c7w1T was 63.6 mol%. On the basis of phylogenetic, phenotypic and chemotaxonomic data, strain 10c7w1T is considered to represent a novel species within the genus Ottowia, for which the name Ottowia cancrivicina sp. nov. is proposed. The type strain is 10c7w1T (=MCCC 1H01399T=KCTC 92200T).


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Estômago , RNA Ribossômico 16S/genética , Ácidos Graxos/química , Humanos , DNA Bacteriano/genética , Estômago/microbiologia , Hibridização de Ácido Nucleico , Ubiquinona , Fosfolipídeos/química
3.
Mar Drugs ; 22(5)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38786594

RESUMO

Marine macroalgae are increasingly recognized for their significant biological and economic potential. The key to unlocking this potential lies in the efficient degradation of all carbohydrates from the macroalgae biomass. However, a variety of polysaccharides (alginate, cellulose, fucoidan, and laminarin), are difficult to degrade simultaneously in a short time. In this study, the brown alga Saccharina japonica was found to be rapidly and thoroughly degraded by the marine bacterium Agarivorans albus B2Z047. This strain harbors a broad spectrum of carbohydrate-active enzymes capable of degrading various polysaccharides, making it uniquely equipped to efficiently break down both fresh and dried kelp, achieving a hydrolysis rate of up to 52%. A transcriptomic analysis elucidated the presence of pivotal enzyme genes implicated in the degradation pathways of alginate, cellulose, fucoidan, and laminarin. This discovery highlights the bacterium's capability for the efficient and comprehensive conversion of kelp biomass, indicating its significant potential in biotechnological applications for macroalgae resource utilization.


Assuntos
Phaeophyceae , Polissacarídeos , Alga Marinha , Alga Marinha/metabolismo , Phaeophyceae/metabolismo , Polissacarídeos/metabolismo , Hidrólise , Biomassa , Glucanos/metabolismo , Flavobacteriaceae/metabolismo , Kelp/metabolismo
4.
BMC Genomics ; 25(1): 514, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789922

RESUMO

BACKGROUND: In aquaculture, sturgeons are generally maintained in the confined spaces, which not only hinders sturgeon movement, but also threatens their flesh quality that seriously concerned by aquaculture industry. As a typical antioxidant, resveratrol can improve the flesh quality of livestock and poultry. However, the mechanism of resveratrol's effect on the muscle of Siberian sturgeon is still unclear. RESULTS: In this study, the dietary resveratrol increased the myofiber diameter, the content of the amino acids, antioxidant capacity markers (CAT, LDH and SOD) levels and the expression levels of mTORC1 and MYH9 in muscle of Siberian sturgeon. Further transcriptome analysis displayed that ROS production-related pathways ("Oxidative phosphorylation" and "Chemical carcinogenes-reactive oxygen species") were enriched in KEGG analysis, and the expression levels of genes related to the production of ROS (COX4, COX6A, ATPeF1A, etc.) in mitochondria were significantly down-regulated, while the expression levels of genes related to scavenging ROS (SOD1) were up-regulated. CONCLUSIONS: In summary, this study reveals that resveratrol may promote the flesh quality of Siberian sturgeon probably by enhancing myofiber growth, nutritional value and the antioxidant capacity of muscle, which has certain reference significance for the development of a new type of feed for Siberian sturgeon.


Assuntos
Antioxidantes , Peixes , Resveratrol , Animais , Resveratrol/farmacologia , Peixes/metabolismo , Peixes/crescimento & desenvolvimento , Peixes/genética , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Nutrientes/metabolismo , Ração Animal/análise , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/citologia , Cadeias Pesadas de Miosina/metabolismo , Cadeias Pesadas de Miosina/genética , Dieta/veterinária , Perfilação da Expressão Gênica
5.
Artigo em Inglês | MEDLINE | ID: mdl-38625732

RESUMO

A novel Gram-stain-negative and facultatively anaerobic bacterium, designated A6E488T, was isolated from intertidal sediment collected from Xiaoshi Island, Weihai, PR China (122° 1' E 37° 31' N). Cells of strain A6E488T were rod-shaped with widths of 0.3-0.4 µm and lengths of 1.1-1.8 µm. The optimal growth conditions were determined to be in 1 % (w/v) NaCl, at 37 °C, and at pH 7.0. The predominant fatty acids (≥10 %) were C19 : 0 cyclo ω8c (59.7 %) and summed feature 8 (13.8 %, C18 : 1 ω7c and/or C18 : 1 ω6c). The sole isoprenoid quinone was Q-10. Oxidase activity was negative but catalase activity was positive. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, one unidentified phospholipid, one unidentified aminolipid, one unidentified glycolipid, and one unidentified lipid. Based on phylogenetic analysis of 16S rRNA gene sequences, strain A6E488T showed the highest sequence similarity to Microbaculum marinum MCCC 1K03192T (97.6 %). The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain A6E488T and M. marinum MCCC 1K03192T did not exceed 78 and 22 %, respectively. These values are below the recommended thresholds of 95 % (ANI) and 70 % (dDDH) for prokaryotic species delineation. On the basis of gene annotation, it was observed that strain A6E488T possesses the capability for thiosulphate oxidation, suggesting that this strain might be important in the sulphur cycle. Based on the results of phenotypic, genotypic, and chemical characterization, strain A6E488T is considered to represent a novel species of the genus Microbaculum, for which the name Microbaculum marinisediminis sp. nov. is proposed. The type strain is A6E488T (=KCTC 92197T=MCCC 1H00516T).


Assuntos
Ácidos Graxos , Sedimentos Geológicos , Composição de Bases , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Nucleotídeos
6.
Microb Genom ; 10(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38265428

RESUMO

In this study, two novel bacterial strains were isolated from coastal sediment of Weihai, China. The two strains were Gram-stain-negative and facultatively aerobic, designated 3-1745T and A346T. Based on phenotypic, genetic and phylogenetic properties, strains 3-1745T and A346T represent two novel species of the genus Marinobacterium. The results of genome analysis revealed many central carbohydrate metabolism pathways such as gluconeogenesis, pyruvate oxidation, tricyclic acid cycle, pentose phosphate pathway and PRPP biosynthesis in the genus Marinobacterium. The ability of strains 3-1745T and A346T to utilize volatile fatty acids was experimentally confirmed. Polyhydroxyalkanoate synthases (PhaA, PhaB and PhaC) for the synthesis of polyhydroxyalkanoates were prevalent in the genus Marinobacterium. Multiple BGCs (biosynthetic gene clusters) including betalactone, ectoine, ranthipeptide, redox-cofactor, RiPPs (ribosomally synthesized post-translationally modified peptides) and T3PKS (polyketide synthases) in the genome of the genus Marinobacterium were found. Additional genome analyses suggested that the genus Marinobacterium contained diverse potential mechanisms of salt tolerance and mainly utilized oligosaccharides. This is the first report on broad genomic analyses of the genus Marinobacterium with the description of two novel species and potential ecological and biotechnological implications.


Assuntos
Genômica , Sedimentos Geológicos , Filogenia , Genótipo , Biotecnologia
7.
FEMS Microbiol Ecol ; 99(12)2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37974050

RESUMO

Magnetotactic bacteria (MTB) have the remarkable capability of producing intracellularly membrane-enveloped magnetic nanocrystals (i.e. magnetosomes) and swimming along geomagnetic field lines. Despite more than 50 years of research, bacterial diversity and magnetosome biomineralization within MTB are relatively less known in the Gammaproteobacteria class than other groups. This is incompatible with the status of Gammaproteobacteria as the most diverse class of gram-negative bacteria with a number of ecologically important bacteria. Here, we identify a novel MTB strain YYHR-1 affiliated with the Gammaproteobacteria class of the Pseudomonadota phylum from a freshwater lake. In YYHR-1, most magnetosome crystals are organized into a long chain aligned along the cell long axis; unusually, a few small superparamagnetic crystals are located at the side of the chain, off the main chain axis. Micromagnetic simulations indicate that magnetostatic interactions among adjacent crystals within a chain reduce the Gibbs energy to enhance chain stability. Genomic analysis suggests that duplication of magnetosome gene clusters may result in off-chain magnetosomes formation. By integrating available genomic data from Gammaproteobacteria, the phylogenetic position of MTB in this class is reassigned here. Our new findings expand knowledge about MTB diversity and magnetosome biomineralization, and deepen understanding of the phylogenetics of the Gammaproteobacteria.


Assuntos
Lagos , Magnetossomos , Lagos/microbiologia , Pequim , Filogenia , Biomineralização , Magnetossomos/química , Magnetossomos/genética , Bactérias/genética , Bactérias Gram-Negativas , Óxido Ferroso-Férrico/análise
8.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37942742

RESUMO

Two novel rod-shaped, Gram-stain-negative, aerobic and non-motile bacterial strains, designated M39T and C2-7T, were isolated from the coastal sediment of Xiaoshi Island, Weihai, PR China. Growth of strain M39T occurred at 15-37 °C, at pH 6.0-9.0 and in the presence of 1.0-9.0 % (w/v) NaCl. Strain C2-7T grew at 15-40 °C, at pH 6.0-8.0 and in the presence of 0.5-8.0 % (w/v) NaCl. Phylogenetic analysis based 16S rRNA gene sequences revealed that strains M39T and C2-7T belong to the phylum Bacteroidota. Based on the results of 16S rRNA gene sequence analysis, the closest relative of strain M39T was Robiginitalea marina KCTC 92035T (95.4 %), and the closest relative of strain C2-7T was Algoriphagus namhaensis DPG-3T (97.0 %). The percentage of conserved protein and average nucleotide identity values between strain M39T and some species of the genus Robiginitalea were 66.9-77.6% and 69.3-71.0 %, respectively, while those between strain C2-7T and some species of the genus Algoriphagus were 68.0-70.1% and 56.1-72.6 %, respectively. The major cellular fatty acids (>10 %) of strain M39T consisted of iso-C15 : 1 F, iso-C15 : 0 and iso-C17 : 0 3-OH, while those of strain C2-7T were iso-C15 : 0 and C16 : 1 ω7c/C16 : 1 ω6c. MK-6 was the only respiratory quinone that was compatible with the genus of strain M39T. The predominant menaquinone of strain C2-7T was MK-7. The major polar lipids of strain M39T were phosphatidylethanolamine and glycolipids, and those of strain C2-7T were phosphatidylethanolamine, one unidentified aminolipid and four unidentified lipids. The DNA G+C contents of strains M39T and C2-7T were 46.9 and 40.8 mol%, respectively. Based upon the results presented in this study, strains M39T and C2-7T represent novel species of the genera Robiginitalea and Algoriphagus, respectively, for which the names Robiginitalea aurantiaca sp. nov. and Algoriphagus sediminis sp. nov. are proposed with the type strains M39T (=MCCC 1H00498T=KCTC 92014T) and C2-7T (=MCCC 1H00414T=KCTC 92027T).


Assuntos
Flavobacteriaceae , Fosfatidiletanolaminas , Fosfatidiletanolaminas/química , Ácidos Graxos/química , Água do Mar/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Cloreto de Sódio , DNA Bacteriano/genética , Análise de Sequência de DNA , Composição de Bases , Técnicas de Tipagem Bacteriana , Flavobacteriaceae/genética
9.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37917552

RESUMO

Three Marinicella strains, X102, S1101T and S6413T, were isolated from sediment samples from different coasts of Weihai, PR China. All strains were Gram-stain-negative, rod-shaped and non-motile. The predominant fatty acids of all strains were iso-C15 : 0 and summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c) and the major polar lipids comprised phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. Strains X102 and S1101T shared 100 % 16S rRNA gene sequence similarity, and strains S1101T/X102 and S6413T had 95.4 % similarity. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strains S1101T and X102 were 99.9 and 99.2 %, respectively. Strain S1101T had ANI values of 69.1-72.9% and dDDH values of 17.9-20.5 % to members of the genus Marinicella. Strain S6413T had ANI values of 69.1-77.5% and dDDH values of 17.6-21.5 % to members of the genus Marinicella. The results of phylogenetic and comparative genomic analysis showed that the three strains belong to two novel species in the genus Marinicella, and strains X102 and S1101T represented one novel species, and strain S6413T represented another novel species. The result of BOX-PCR and genomic analysis showed that X102 and S1101T were not the same strain. The phylogenetic analyses and genomic comparisons, combined with phylogenetic, phenotypic and chemotaxonomic features, strongly supported that the three strains should be classified as representing two novel species of the genus Marinicella, for which the names Marinicella marina sp. nov. and Marinicella gelatinilytica sp. nov. are proposed, respectively. The type strains of the two novel species are S1101T (=KCTC 92642T=MCCC 1H01359T) and S6413T (=KCTC 92641T=MCCC 1H01362T), respectively. In addition, all previously described isolates of Marinicella were isolated from marine environments, but our study showed that Marinicella is also distributed in non-/low-saline habitats (e.g. animal gut, soil and indoor surface), which broadened our perception of the environmental distribution of Marinicella.


Assuntos
Alcanivoraceae , Ácidos Graxos , Ácidos Graxos/química , Fosfolipídeos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Hibridização Genômica Comparativa
10.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37930355

RESUMO

A Gram-stain-positive, aerobic, rod-shaped, endospore-forming and motile, by means of peritrichous flagella, bacterium, designated DT12T, was isolated from a lake water sample from Datun Lake of Yunnan Province, PR China. The results of phylogenetic analysis based on 16S rRNA gene sequence and the concatenated alignment of 120 ubiquitous single-copy proteins indicated that the novel strain represented a member of the genus Tumebacillus. The sole quinone was menaquinone-7 and the cell-wall peptidoglycan was type-A1γ. The major fatty acids (>10 %) of the novel strain were iso-C15 : 0 and anteiso-C15 : 0, while the major polar lipids were phosphatidylmonomethylethanolamine, phosphatidylethanolamine and phosphatidylglycerol. The results of phylogenetic analyses combined with phylogenetic, phenotypic and chemotaxonomic features, strongly supported the hypothesis that the strain should be classified as representing a novel species of the genus Tumebacillus, for which the name Tumebacillus lacus sp. nov. is proposed. The type strain is DT12T (=KCTC 33958T= MCCC 1H00320T). The genomic analysis revealed that DT12T has various biosynthetic gene clusters for secondary metabolites, and members of the genus Tumebacillus may represent a promising source of new natural products. Our study also showed that members of the genus Tumebacillus are widely distributed in a variety of habitats throughout the globe, particularly in soils, human-, animal- and plant-associated environments. Members of the genus Tumebacillus may have an important role in the growth and health of humans, plants and animals.


Assuntos
Ácidos Graxos , Lagos , Animais , Humanos , Filogenia , RNA Ribossômico 16S/genética , China , Ácidos Graxos/química , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Água
11.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37982360

RESUMO

A Gram-stain-negative, rod-shaped, non-gliding, non-flagellated, yellow, facultatively aerobic bacterial strain, designated as W260T, was isolated from marine sediment of Xiaoshi Island, Weihai, PR China. The cells of W260T were 0.3-0.5 µm wide and 1.5-2.0 µm long. Strain W260T grows optimally at a temperature of 33 °C (range, 15-37 °C), pH 8 (range, pH 6.5-9.5) and witha NaCl concentration of 3.0 % (w/v; range, 1-8 %). It has the highest sequence similarity to Thiohalobacter thiocyanaticus DSM 21152T (91.7 %), followed by Wenzhouxiangella marina MCCC 1K00261T (91.4 %) and Thiohalospira alkaliphila DSM 17116T (90.7 %). The similarity between strain W260T and the species Thiohalophilus thiocyanatoxydans DSM 16326T was 89.4 %. Genome sequencing revealed a genome size of 3 430 000 bp and a DNA G+C content of 64.5 mol%. The average nucleotide identity and digital DNA-DNA hybridization values between strain W260T and W. marina MCCC 1K00261T were 69.6 and 16.1-20.6 %, respectively. The predominant quinone was ubiquitin-8, and the major fatty acids were iso-C14 : 0 and iso-C16 : 0. The polar lipids consisted of phosphatidylethanolamine, phospholipid, phosphatidylglycerol, diphosphatidylglycerol and four unidentified lipids. Based on phenotypic, phylogenetic and chemotaxonomic information, it was determined that strain W260T represents a novel genus and species and it was given the name Marinihelvus fidelis sp. nov. The type strain is W260T (=MCCC 1H00471T=KCTC 92639T).


Assuntos
Ácidos Graxos , Sedimentos Geológicos , Ácidos Graxos/química , Filogenia , Análise de Sequência de DNA , Composição de Bases , Técnicas de Tipagem Bacteriana , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Sedimentos Geológicos/microbiologia , Fosfolipídeos/química , Genômica
12.
Antonie Van Leeuwenhoek ; 116(12): 1447-1455, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37899393

RESUMO

The Gram-strain-negative, facultative anaerobic, chemoheterotrophic, short-rod-shaped, non-motile, forming yellow colonies strain, designated F89T, was isolated from marine sediment of Xiaoshi Island, Weihai. Strain F89T grew at 15-37 °C (optimally at 28 °C), at pH 6.0-8.5 (optimally at pH 7.0) and in the presence of 1-5% (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequence showed that strain F89T was related to the family Flavobacteriaceae. F89T had highest 16S rRNA gene sequence similarity to Maribacter cobaltidurans MCCC 1K03318T (93.3%). The predominant cellular fatty acids of F89T were iso-C15:0, iso-C15:0 G and Summed Feature 3. The main respiratory quinone of F89T was menaquinone 6 (MK-6), consistent with that observed for all related strains. The polar lipid profile of strain F89T contained phosphatidylethanolamine, two aminolipids and three unidentified polar lipids. The genomic DNA G + C content of strain F89T was 42.7%. Strain F89T encoded 121 glycoside hydrolases and was a potential polysaccharide degrading bacterium. Differential phenotypic and genotypic characteristics of the strain showed that F89T should be classified as a novel genus in Flavobacteriaceae, for which the name Cerina litoralis is proposed. The type strain is F89T (= MCCC 1H00510T = KCTC 92203T).


Assuntos
Flavobacteriaceae , Água do Mar , Água do Mar/microbiologia , Filogenia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Sedimentos Geológicos/microbiologia , Ácidos Graxos/análise
13.
Fish Shellfish Immunol ; 142: 109154, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37821003

RESUMO

Ctenopharyngodon idella and Squaliobarbus curriculus, members of the Cyprinidae family and Yaroideae subfamily, have shown different levels of resistance to grass carp reo virus (GCRV), with S. curriculus exhibiting higher resilience. In the pursuit to explore the distinctions in the structural and expression traits of BF/C2 (A,B) between the two species, we conducted an analysis involving the cloning and examination of various coding sequences (CDS). We successfully cloned the CDS of ci-BF/C2A and ci-BF/C2B from C. idella, which spanned 2259 bp and 2514 bp respectively, encoding 752 and 837 amino acids. Similarly, the CDS of sc-BF/C2A and sc-BF/C2B from S. curriculus were cloned, featuring lengths of 1353 bp and 2517 bp and encoding 450 and 838 amino acids, respectively. A chromosome collinearity assessment revealed that ci-BF/C2A demonstrated collinearity with sc-BF/C2A, a finding not replicated with ci-BF/C2B and sc-BF/C2B. Delving into gene structure, we discerned that ci-BF/C2A harbored a greater number of Tryp_SPc domains compared to sc-BF/C2A. Following this, we engineered and purified six prokaryotic recombinant proteins: CI-BF/C2A, CI-BF/C2A1 (a variant resulting from the deletion of the Tryp_SPc domain of CI-BF/C2A), CI-BF/C2A2 (representing the Tryp_SPc domain of CI-BF/C2A), CI-BF/C2B, SC-BF/C2A, and SC-BF/C2B. Through serum co-incubation tests with these recombinant proteins, we established the activation of the complement marker C3 in each case. Utilizing fluorescence quantitative expression analysis, we observed ubiquitous expression of ci-BF/C2A and ci-BF/C2B across all grass carp tissues, predominantly in the liver. This pattern mirrored in S. curriculus, where sc-BF/C2A was highly expressed in the gills, and sc-BF/C2B manifested notably in the liver. Kidney cell infection experiments on both species revealed enhanced resistance to GCRV post-incubation with the recombinant proteins. Notably, cells treated with SC-BF/C2 (A, B) exhibited pronounced resilience compared to those treated with CI-BF/C2 (A, B, A1, A2). However, cells incubated with CI-BF/C2A1 and CI-BF/C2A2 showed strengthen resistance relative to cells treated with CI-BF/C2A and CI-BF/C2B. In GCRV infection trials on grass carp, ci-BF/C2A and ci-BF/C2B expressions reached a zenith on the seventh day post-infection, highlighting a distinctive functional mode in immune defense against GCRV infection orchestrated by BF/C2. The empirical data underscores the pivotal role of the Tryp_SPc domain in immune responses to GCRV infection, pinpointing its influence on ci-BF/C2A expression. Conclusively, this investigation provides a foundational understanding of the unique immune function characteristics of BF/C2 in grass carp, paving the way for further scholarly exploration in this realm.


Assuntos
Carpas , Cyprinidae , Doenças dos Peixes , Infecções por Reoviridae , Reoviridae , Animais , Sequência de Aminoácidos , Carpas/genética , Carpas/metabolismo , Reoviridae/fisiologia , Proteínas Recombinantes , Aminoácidos , Proteínas de Peixes/química
14.
Arch Microbiol ; 205(11): 350, 2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37805946

RESUMO

A Gram-stain-negative, rod-shaped, glide, non-flagellated, and facultatively anaerobic bacterial strain, designated as Z654T, was isolated from the gut of abalone Haliotis discus hannai from Rongcheng, Shandong province, China. Cells are 0.2-0.8 µm in width and 0.7-3.4 µm in length. Cells grew best at 30 °C (range, 15-37 °C), pH 7.0 (range, 6.0-8.5) and NaCl concentration of 2.0% (w/v) (range, 1-10%). According to the phylogenetic analysis of 16S rRNA gene sequence, the strain belongs to the genus Halocynthiibacter and the closest strain is Halocynthiibacter arcticus KCTC 42129 T (97.12%). The genome size of strain Z654T was 3,296,250 bp and the DNA G + C content was 54.2 mol%. The average nucleotide identity (ANI) scores and digital DNA-DNA hybridization (dDDH) scores with H. arcticus KCTC 42129 T were 70% and 14.6-18.2%, respectively. The predominant quinone was Q-10 and the major fatty acids were C18:0, C18:1 ω7c 11-methyl and summed feature 8. The polar lipids consisted of phosphatidylcholine, phosphatidylglycerol, unidentified aminolipid and unidentifed lipids. Based on the phenotypic, phylogenetic and chemotaxonomic data, strain Z654T was considered to represent a novel species of the genus Halocynthiibacter, for which the name Halocynthiibacte halioticoli sp. nov., is proposed. The type strain is Z654T (= MCCC 1H00503T = KCTC 92003 T).


Assuntos
Gastrópodes , Vísceras , Animais , Filogenia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Ácidos Graxos/química , Gastrópodes/microbiologia , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana , Fosfolipídeos/química , Ubiquinona/química
15.
Antonie Van Leeuwenhoek ; 116(12): 1375-1384, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37843738

RESUMO

A novel Gram-stain-negative, aerobic, non-motile, rod-shaped and orange-colored bacterium, designated as strain C305T, was isolated from marine sediment of the coast area of Weihai, China. Strain C305T growth occurs at 4-40 °C (optimally at 30-33 °C), pH 6.0-9.0 (optimally at pH 8.0) and with 0.5-10.0% (w/v) NaCl (optimum 1.5-3.0%). No growth is observed without NaCl. The major cellular fatty acids of strain C305T were identified as iso-C15:0, iso-C15:1G and iso-C17:0 3-OH. The major respiratory quinone was found to be MK-6, and the DNA G + C content was determined to be 35.5 mol%. The predominant polar lipids were mainly phosphatidylethanolamines (PE), unidentified aminophospholipids (APL), andunidentified lipid (L2). Phylogenetic analysis based on 16S rRNA gene sequences revealed that C305T was a member of the genus Brumimicrobium and had a 16S rRNA gene sequence similarity values of 96.9-98.0% with recognized Brumimicrobium species. On the basis of the phylogenetic and phenotypic evidences, strain C305T represents a novel species of the genus Brumimicrobium, for which the name Brumimicrobium oceani sp. nov. is proposed. The type strain is C305T (= KCTC 62371 T = MCCC 1H00297T).


Assuntos
Flavobacteriaceae , Água do Mar , Água do Mar/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Cloreto de Sódio , Lagos , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Vitamina K 2/química , Ácidos Graxos/análise
16.
Curr Microbiol ; 80(12): 370, 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37838638

RESUMO

A novel bacterium, designated E313T, was isolated from brown algae Saccharina japonica in Weihai, China. The strain is a Gram-stain-negative, non-flagellated, non-gliding, aerobic, rod-shaped bacterium that grows optimally at 28 °C with pH levels between 7.0 and 7.5 and in the presence of 2-3% (w/v) NaCl. Phylogenetic analyses based on its 16S rRNA gene sequence placed the strain within the monophyletic cluster of the genus Winogradskyella, exhibiting the highest similarity to Winogradskyella wandonensis KCTC 32579T (96.8%). Genome comparison of strain E313T with W. wandonensis KCTC 32579T and W. thalassocola KCTC 12221T revealed average nucleotide identity (ANI) values of 74.2% and 74.8%, and DNA-DNA hybridization (dDDH) values of 19.0% and 19.5%, respectively, lower than prokaryotic species delineation values. The strain E313T could hydrolyze alginate. A total of 123 carbohydrate-active enzymes were annotated according to the CAZy database. Especially, one oligo-alginate lyase and one poly(ß-D-mannuronate) lyase were identified in the genome of strain E313T. Strain E313T possessed MK-6 quinone and iso-C15:0, iso-C15:1 G, iso-C17:0 3-OH, and iso-C15:0 3-OH as main fatty acids. Its major polar lipids were phosphatidylethanolamine (PE), one unidentified aminolipid, and two unknown lipids. Thus, based on phylogenetic, physiological, and chemotaxonomic analyses, we propose a novel species of the genus Winogradskyella, named Winogradskyella immobilis sp. nov., with E313T (= MCCC 1H00506T = KCTC 82731T) as the type strain.


Assuntos
Phaeophyceae , Água do Mar , Água do Mar/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Análise de Sequência de DNA , Vitamina K 2 , Ácidos Graxos/análise , Phaeophyceae/genética
17.
Microorganisms ; 11(10)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37894175

RESUMO

A novel Gram-stain-negative, facultatively anaerobic, and non-motile bacterial strain, designated SDUM287046T, was isolated from the coastal sediments of Jingzi Port of Weihai, China. Cells of strain SDUM287046T were rod-shaped with widths of 0.4-0.5 µm and lengths of 0.7-1.4 µm and could produce flexirubin-type pigments. Optimum growth of strain SDUM287046T occurred at 33-35 °C, pH 7.0, and with 2% (w/v) NaCl. Oxidase activity was negative, but catalase activity was positive. Phylogenetic analysis based on 16S rRNA gene sequence revealed that strain SDUM287046T was most closely related to Aequorivita aquimaris D-24T (98.3%). The main cellular fatty acids were iso-C15:0, anteiso-C15:0, iso-C17:0 3-OH, and summed feature 9 (comprised of iso-C17:1 ω9c and/or C16:0 10-methyl). The sole respiratory quinone was MK-6. The polar lipids consisted of phosphatidylethanolamine (PE), one aminolipid (AL), three unidentified glycolipids (GL), and three unidentified lipids (L). The DNA G + C content was 39.3 mol%. According to the integrated results of phylogenetic, physiological, biochemical, and chemotaxonomic characteristics, we propose that strain SDUM287046T represents a novel species of the genus Aequorivita, for which the name Aequorivita aurantiaca sp. nov. is proposed. The type strain is SDUM287046T (=KCTC 92754T = MCCC 1H01418T). Comparative genomic analysis showed that the 16 Aequorivita species shared 1453 core genes and differed mainly in amino acid metabolism, cofactor metabolism, and vitamin metabolism. Biogeographic distribution analysis indicated that the marine environments were the primary habitat of Aequorivita bacteria.

18.
Arch Microbiol ; 205(10): 331, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37698663

RESUMO

Known for its species abundance and evolutionary status complexity, family Roseobacteraceae is an important subject of many studies on the discovery, identification, taxonomic status, and ecological properties of marine bacteria. This study compared and analyzed the phylogenetic, genomic, biochemical, and chemo taxonomical properties of seven species from three genera (Psychromarinibacter, Lutimaribacter, and Maritimibacter) of the family Roseobacteraceae. Moreover, a novel strain, named C21-152T was isolated from solar saltern sediment in Weihai, China. The values of 16S rRNA gene sequence similarity, the average nucleotide identity (ANI), the average amino acid identity (AAI), and the digital DNA-DNA hybridization (dDDH) between genomes of the novel strain and Psychromarinibacter halotolerans MCCC 1K03203T were 97.19, 78.49, 73.45, and 21.90%, respectively. Genome sequencing of strain C21-152T revealed a complete Sox enzyme system related to thiosulfate oxidization as well as a complete pathway for the final conversion of hydroxyproline to α-ketoglutarate. In addition, strain C21-152T was resistant to many antibiotics and had the ability to survive below 13% salinity. This strain had versatile survival strategies in saline environments including salt-in, compatible solute production and compatible solute transport. Some of its physiological features enriched and complemented the knowledge of the characteristics of the genus Psychromarinibacter. Optimum growth of strain C21-152T occurred at 37 â„ƒ, with 5-6% (w/v) NaCl and at pH 7.5. According to the results of the phenotypic, chemotaxonomic characterization, phylogenetic properties and genome analysis, strain C21-152T should represent a novel specie of the genus Psychromarinibacter, for which the name Psychromarinibacter sediminicola sp. nov. is proposed. The type strain is C21-152T (= MCCC 1H00808T = KCTC 92746T = SDUM1063002T).


Assuntos
DNA , Rhodobacteraceae , Mapeamento Cromossômico , Filogenia , RNA Ribossômico 16S/genética , Rhodobacteraceae/classificação
19.
Antibiotics (Basel) ; 12(9)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37760676

RESUMO

Antibiotics and heavy metals have caused serious contamination of the environment and even resulted in public health concerns. It has therefore become even more urgent to adopt a sustainable approach to combating these polluted environments. In this paper, we investigated the microbial community of marine sediment samples after 255 days of enrichment culture under Cu (II) and lincomycin stress and ZC255 was the most resistant strain obtained. The 16S rRNA gene sequence confirmed that it belonged to the genus Rossellomorea. Strain ZC255 was resistant to 12 kinds of antibiotics, and had a superior tolerance to Cu (II), Pb (II), Ni (II), Zn (II), Cr (III), and Cd (II). Moreover, it exhibits strong bioremoval ability of Cu and lincomycin. The removal efficiency of Cu (II) and lincomycin can achieve 651 mg/g biomass and 32.5 mg/g biomass, respectively. Strain ZC255 was a promising isolate for pollution bioremediation applications.

20.
Artigo em Inglês | MEDLINE | ID: mdl-37750765

RESUMO

Two novel Gram-stain-negative, facultative anaerobic, chemoheterotrophic, non-motile and rod-shaped strains were isolated from intertidal sediment sampled at Xiaoshi Island, Weihai, PR China. Full sequence analysis of the 16S rRNA genes showed that the two strains were closely related to members of the genus Winogradskyella and the phylogenetic similarities to their closest relative, Winogradskyella aquimaris, were 96.7 and 95.8 %, respectively. The DNA G+C contents of strains 2Y89T and D23T were 33.3 and 35.1 mol%, respectively. The respiratory quinone detected in both strains was MK-6. The major fatty acids detected in strain 2Y89T were iso-C15 : 0 and iso-C15 : 1G, and in strain D23T they were iso-C15 : 1G, iso-C15 : 0 and iso-C17 : 03-OH. The principal polar lipids of strain 2Y89T mainly included phosphatidylethanolamine, aminoglycolipids, unidentified aminolipids, unidentified glycolipids and unidentified lipids; strain D23T was the same as strain 2Y89T except that it did not contain aminoglycolipids. Based on the phenotypic, chemical taxonomic, genotypic and phylogenetic features established in this study, we suggest that the new strains represent two novel species of the genus Winogradskyella, for which the names Winogradskyella vincentii sp. nov. (type strain 2Y89T=MCCC 1H00477T=KCTC 92034T) and Winogradskyella alexanderae sp. nov. (type strain D23T=MCCC 1H00462T=KCTC 92023T) are proposed.


Assuntos
Bactérias , Ácidos Graxos , Filogenia , RNA Ribossômico 16S/genética , Composição de Bases , Ácidos Graxos/química , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA