Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioinspir Biomim ; 16(4)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-33784648

RESUMO

Even though unmanned aerial vehicles (UAVs) are taking on more expansive roles in military and commercial applications, their adaptability and agility are still inferior to that of their biological counterparts like birds, especially at low and moderate Reynolds numbers. A system of aeroelastic devices used by birds, known as the covert feathers, has been considered as a natural flow-control device for mitigating flow separation, enhancing lift, and delaying stall. This study presents the effects of a covert-inspired flap on two airfoils with different stall characteristics at Reynolds numbers in the order of 105, where small scale UAVs operate. Detailed experiments and simulations are used to investigate how the covert-inspired flap affects lift and drag on an airfoil that exhibits sharp or sudden stall (i.e. the NACA 2414 airfoil) and one that exhibits soft or gradual stall (i.e. an E387(A) airfoil). The effects of the flap chord-wise locations and deflection angles on lift and drag is investigated, through wind tunnel experiments, for two types of flaps namely, a freely-moving flap and a static flap. Results show that the static covert-inspired flap can delay stall by up to 5° and improve post-stall lift by up to 23%. However, the post-stall lift improvement characteristics and sensitivities are highly affected by the airfoil choice. For the soft stall airfoil (i.e. E387(A)), the stall onset delay is insensitive to changing the flap deflection angle, and the flap becomes ineffective when the flap location is changed. In contrast, for the sharp stall airfoil (i.e. NACA 2414), the post-stall lift improvements can be tuned using the flap deflection angle, and the flap remains effective over a wide range of chord-wise locations. Numerical studies reveal that the lift improvements are attributed to a step in the pressure distribution over the airfoil, which allows for lower pressures on the suction side upstream of the flap. The distinctions between the flap-induced lift enhancements on the soft and sharp stall airfoils suggest that the flap can be used as a tunable flow control device for the sharp stall airfoil, while for the soft stall airfoil, it can solely be used as a stall mitigation device that is either on or off.


Assuntos
Voo Animal , Animais , Aves , Plumas , Modelos Biológicos , Asas de Animais
2.
Bioinspir Biomim ; 14(5): 056015, 2019 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-31357180

RESUMO

Birds fly in dynamic flight conditions while maintaining aerodynamic efficiency. This agility is in part due to specialized feather systems that function as flow control devices during adverse conditions such as high-angle of attack maneuvers. In this paper, we present an engineered three-dimensional leading-edge device inspired by one of these specialized groups of feathers known as the alula. Wind tunnel results show that, similar to the biological alula, the leading-edge alula-inspired device (LEAD) increases the wing's ability to maintain higher pressure gradients by modifying the near-wall flow. It also generates tip vortices that modify the turbulence on the upper-surface of the wing, delaying flow separation. The effect of the LEAD location and morphology on lift production and wake velocity profile are investigated using force and hot-wire anemometer measurements, respectively. Results show lift improvements up to 32% and 37% under post and deep stall conditions, respectively. Despite the observed drag penalties of up to 39%, the aerodynamic efficiency, defined as the lift-to-drag ratio, is maintained and sometimes improved with the addition of the LEAD to a wing. This is to be expected as the LEAD is a post-stall device, suitable for high angles of attack maneuvers, where maintaining lift production is more critical than drag reduction. The LEAD also accelerates the flow over the wing and reduces the wake velocity deficit, indicating attenuated flow separation. This work presents a detailed experimental investigation of an engineered three dimensional leading-edge device that combines the functionality of traditional two dimensional slats and vortex generators. Such a device can be used to not only extend the flight envelope of unmanned aerial vehicles (UAVs), but to also study the role and function of the biological alula.


Assuntos
Biomimética/instrumentação , Plumas/anatomia & histologia , Asas de Animais/anatomia & histologia , Animais , Fenômenos Biomecânicos , Voo Animal/fisiologia , Vento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA