Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 246
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small ; : e2400410, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38721986

RESUMO

The construction of defective sites is one of the effective strategies to create high-activity Metal-Organic frameworks (MOFs) catalysts. However, traditional synthesis methods usually suffer from cumbersome synthesis steps and disordered defect structures. Herein, a cluster-cluster co-nucleation (CCCN) strategy is presented that involves the in situ introduction of size-matched functional polyoxometalates (H6P2W18O62, {P2W18}) to intervene the nucleation process of cluster-based MOFs (UiO-66), achieving one-step inducement of exposed defective sites without redundant post-processing. POM-induced UiO-66 ({P2W18}-0.1@UiO-66) exhibits a classical reo topology for well-defined cluster defects. Moreover, the defective sites and the interaction between POM and skeletal cluster nodes are directly observed by Integrated Differential Phase Contrast in Scanning Transmission Electron Microscopy (iDPC-STEM). Owing to the molecular-level proximity between defective sites and POM in the same nano-reaction space, {P2W18}-0.1@UiO-66 exhibits efficient tandem catalysis in the preparation of γ-valerolactone (γ-GVL) from laevulinic acid (LA) by the combination of Lewis and Brønsted acids with 11 times higher performance than defective UiO-66 formed by conventional coordination modulation strategy. The CCCN strategy is applicable to different POM and has the potential to be extended to other cluster-based MOFs, which will pave a new way for the construction of functional MOFs with multi-centered synergistic catalysis.

2.
Chem Commun (Camb) ; 60(36): 4793-4796, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38602273

RESUMO

By incorporating the electron-rich naphthalene and electron-deficient triazine as an electron donor and an electron acceptor, a new donor-acceptor covalent organic framework as an electron distribution regulator was obtained for boosting photocatalytically oxidative coupling of benzylamines and selective oxidation of thioethers under the irradiation of green light (520 nm).

3.
ACS Omega ; 9(12): 14233-14240, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38559924

RESUMO

The radical difunctionalization of alkenes plays a vital role in pharmacy, but the conventional homogeneous catalytic systems are challenging in selectivity and sustainability to afford the target molecules. Herein, the famous readily available metal-organic framework (MOF), Cu3(BTC)2, has been applied to cyano-trifluoromethylation of alkenes as a high-performance and recyclable heterogeneous catalyst, which possesses copper(II) active sites residing in funnel-like cavities. Under mild conditions, styrene derivatives and various unactivated olefins could be smoothly transformed into the corresponding cyano-trifluoromethylation products. Moreover, the transformation brought about by the active copper center in confined environments achieved regio- and shape selectivity. To understand the enhanced selectivity, the activation manner of the MOF catalyst was studied with control catalytic experiments such as FT-IR and UV-vis absorption spectroscopy of substrate-incorporated Cu3(BTC)2, which elucidated that the catalyst underwent a radical transformation with the intermediates confined in the MOF cavity, and the confinement effect endowed the method with pronounced selectivities.

4.
ACS Appl Mater Interfaces ; 16(11): 13938-13947, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38451748

RESUMO

Natural copper oxygenases provide fundamental principles for catalytic oxidation with kinetically inert molecular oxygen, but it remains a marked challenge to mimic both their structure and function in an entity. Inspired by the CuA enzymatic sites, herein we report two new photoactive binuclear copper-iodine- and bisbenzimidazole-comodified coordination polymers to reproduce the natural oxo-functionalization repertoire in a unique photocatalytic pathway. Under light irradiation, the Cu-halide coordination polymers effectively reduce NHP esters and complete oxygen reduction activation via photoinduced electron transfer for the aerobic oxidative coupling of hydroquinone with terminal alkynes, affording hydroxyl-functionalized ketones with high efficiency and selectivity. This supramolecular approach to developing bioinspired artificial oxygenases that merge transition metal- and photocatalysis supplies a new way to fabricate distinctive photocatalysts with desirable catalytic performances and controllable precise active sites.

5.
Angew Chem Int Ed Engl ; 63(18): e202402755, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38462995

RESUMO

Selective photoreduction of CO2 to multicarbon products, is an important but challenging task, due to high CO2 activation barriers and insufficient catalytic sites for C-C coupling. Herein, a defect engineering strategy for incorporating copper sites into the connected nodes of defective metal-organic framework UiO-66-NH2 for selective overall photo-reduction of CO2 into acetone. The Cu2+ site in well-modified CuN2O2 units served as a trapping site to capture electrons via efficient electron-hole separation, forming the active Cu+ site for CO2 reduction. Two NH2 groups in CuN2O2 unit adsorb CO2 and cooperated with copper ion to functionalize as a triple atom catalytic site, each interacting with one CO2 molecule to strengthen the binding of *CO intermediate to the catalytic site. The deoxygenated *CO attached to the Cu site interacted with *CH3 fixed at one amino group to form the key intermediate CO*-CH3, which interacted with the third reduction intermediate on another amino group to produce acetone. Our photocatalyst realizes efficient overall CO2 reduction to C3 product acetone CH3COCH3 with an evolution rate of 70.9 µmol gcat -1 h-1 and a selectivity up to 97 % without any adducts, offering a promising avenue for designing triple-atomic sites to producing C3 product from photosynthesis with water.

6.
Org Biomol Chem ; 22(12): 2451-2455, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38419463

RESUMO

An efficient synthesis of sulfone structures through selenonium salts and sodium sulfinates was developed. Under the irradiation of a blue LED lamp, the two substrates generate aryl and sulfonyl radicals through the activation of the intermediate electron donor acceptor (EDA) complex, thereby synthesizing aromatic, heteroaromatic and aliphatic sulfones in medium to good yields. The advantages of this strategy are metal-free, mild conditions and the leaving group is recycled to construct new selenonium salts.

7.
Angew Chem Int Ed Engl ; 63(11): e202319605, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38217331

RESUMO

Modifying redox potential of substrates and intermediates to balance pairs of redox steps are important stages for multistep photosynthesis but faced marked challenges. Through co-clathration of iridium photosensitizer and imine substrate within one packet of a metal-organic capsule to shift the redox potentials of substrate, herein, we reported a multiphoton enzymatic strategy for the generation of heterocycles by intramolecular C-X hydrogen evolution cross-couplings. The cage facilitated a pre-equilibrium substrate-involving clathrate that cathodic shifts the oxidation potential of the substrate-dye-host ternary complex and configuration inversion of substrate via spatial constraints in the confined space. The new two photon excitation strategy enabled the precise control of the multistep electron transfer between each pair (photosensitizer, substrate and the capsule), endowing the catalytic system proceeding smoothly with an enzymatic fashion. Three kinds of 2-subsituted (-OH, -NH2 , and -SH) imines and N-aryl enamines all give the corresponding cyclization products efficiently under visible light irradiation, demonstrating the promising of the microenvironment driven thermodynamic activation in the host-dye-substrate ternary for synergistic combination of multistep photocatalytic transformations.

8.
Dalton Trans ; 52(46): 17109-17113, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37987084

RESUMO

Photocatalytic C-H bond activation is a challenging approach to selectively functionalize C(sp3)-H bonds with dioxygen under mild conditions. Herein, by merging transition metal- and photo-catalysis, photoactive Cu(I)-halide(X) (X = Cl, Br, I) clusters are employed to effectively catalyse the selective monooxygenation and C-C oxidative cross-coupling of C(sp3)-H bonds with unreactive O2 upon light irradiation. This modern protocol promises a photoinduced SET process between Cu(I)-clusters and O2, and possibly forms Cu(II)-O2˙- species for abstracting the H-atom from the C(sp3)-H bond. This process produces alkyl radicals to react with -OOH or nucleophiles for oxidation or cross-coupling products, advancing the Cu(I)-cluster mediated photoredox catalysis toward functional fine chemicals with pursued selectivity.

9.
Chem Sci ; 14(42): 11699-11707, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37920339

RESUMO

Supramolecular cages have received tremendous attention as they can contain catalysts that exhibit confinement effects in the cavity, leading to excellent performances. Herein, we report an example wherein the catalytic region is extended from the cage cavity to the windows, and investigate its confinement effect by utilizing the Pd6LAu12 cage that contains rigidly fixed and isolated gold complexes at the windows. Pd6LAu12 exhibit three features of particular interest while assessing their properties in gold-catalyzed cyclization reactions. First, the catalysts experience a cage effect as they display higher reactivity and selectivity compared to the monomeric analogue, as a result of substrate pre-organization at the windows. Second, the metal complexes are physically separated by the cage structure, preventing the formation of less active dinuclear gold complexes making it more stable under hydrous conditions. Third, the cage windows present the characteristics of enzymatic catalysis via Michaelis-Menten-type mechanism analysis. This contribution presents an alternative way to engineer supramolecular catalysts through extending the catalytic region.

10.
Angew Chem Int Ed Engl ; 62(45): e202310420, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37661189

RESUMO

The excellent catalytic performances of enzymes in terms of activity and selectivity are an inspiration for synthetic chemists and this has resulted in the development of synthetic containers for supramolecular catalysis. In such containers the local environment and pre-organization of catalysts and substrates leads to control of the activity and selectivity of the catalyst. Herein we report a supramolecular strategy to encapsulate single catalysts in a urea-functionalized Fe4 L6 cage, which can co-encapsulate a functionalized urea substrate through hydrogen bonding. Distinguished selectivity is obtained, imposed by the cage as site isolation only allows catalysis through π activation of the substrate and as a result the selectivity is independent of catalyst concentration. The encapsulated catalyst is more active than the free analogue, an effect that can be ascribed to transitionstate stabilization rather than substrate pre-organization, as revealed by the MM kinetic data. The simple strategy reported here is expected to be of general use in many reactions, for which the catalyst can be functionalized with a sulfonate group required for encapsulation.

11.
Adv Mater ; 35(42): e2305742, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37667462

RESUMO

Herein, facet-engineered Cu2 O nanostructures are synthesized by wet chemical methods for electrocatalytic HER, and it is found that the octahedral Cu2 O nanostructures with exposed crystal planes of (111) (O-Cu2 O) has the best hydrogen evolution performance. Operando Raman spectroscopy and ex-situ characterization techniques showed that Cu2 O is reduced during HER, in which Cu dendrites are grown on the surface of the Cu2 O nanostructures, resulting in the better HER performance of O-Cu2 O after HER (O-Cu2 O-A) compared with that of the as-prepared O-Cu2 O. Under illumination, the onset potential of O-Cu2 O-A is ca. 52 mV positive than that of O-Cu2 O, which is induced by the plasmon-activated electrochemical system consisting of Cu2 O and the in-situ generated Cu dendrites. Incident photon-to-current efficiency (IPCE) measurements and the simulated UV-Vis spectrum demonstrate the hot electron injection (HEI) from Cu dendrites to Cu2 O. Ab initio nonadiabatic molecular dynamics (NAMD) simulations revealed the transfer of photogenerated electrons (27 fs) from Cu dendrites to Cu2 O nanostructures is faster than electron relaxation (170 fs), enhancing its surface plasmons activity, and the HEI of Cu dendrites increases the charge density of Cu2 O. These make the energy level of the catalyst be closer to that of H+ /H2 , evidenced by the plasmon-enhanced HER electrocatalytic activity.

12.
Chem Commun (Camb) ; 59(75): 11220-11223, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37655546

RESUMO

By incorporating tetrakis(4-carboxyphenyl)porphyrin and bis(3,5-dicarboxyphenyl)pyridine into one single metal-organic framework (MOF), a multifunctional mixed-ligand Zn-MIX with large pores was obtained. Under visible-light irradiation, Zn-MIX exhibits high photocatalytic activity for the oxidation of amines and sulfides.

13.
Nat Commun ; 14(1): 4002, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37414824

RESUMO

The ability to deliver electrons is vital for dye-based photocatalysts. Conventionally, the aromatic stacking-based charge-transfer complex increases photogenerated electron accessibility but decreases the energy of excited-state dyes. To circumvent this dilemma, here we show a strategy by tuning the stacking mode of dyes. By decorating naphthalene diimide with S-bearing branches, the S···S contact-linked naphthalene diimide string is created in coordination polymer, thereby enhancing electron mobility while simultaneously preserving competent excited-state reducing power. This benefit, along with in situ assembly between naphthalene diimide strings and exogenous reagent/reactant, improves the accessibility of short-lived excited states during consecutive photon excitation, resulting in greater efficiency in photoinduced electron-transfer activation of inert bonds in comparison to other coordination polymers with different dye-stacking modes. This heterogeneous approach is successfully applied in the photoreduction of inert aryl halides and the successive formation of CAr-C/S/P/B bonds with potential pharmaceutical applications.


Assuntos
Calcogênios , Compostos Inorgânicos , Polímeros/química , Transporte de Elétrons , Naftalenos/química
14.
Org Biomol Chem ; 21(30): 6192-6196, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37466287

RESUMO

A visible-light-mediated protocol to prepare 1,2-diamines has been successfully explored based on the photoredox/Brønsted acid co-catalyzed α-amino alkylations of imines with tertiary amines. Both ketimines and aldimines are applicable to this transformation. Various 1,2-diamines with different functional groups were produced in moderate to excellent yields. Moreover, this approach could be performed on a gram scale, showing its practicality.

15.
Org Biomol Chem ; 21(23): 4909-4912, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37259523

RESUMO

A new strategy involving three-component functionalization of olefins with sulfoxyimidoylsulfonium salt and a nucleophilic reagent for the synthesis of ß-amino alcohols and ß-amino ethers by photoredox catalysis was developed. The sulfoxyimidoylsulfonium salt is important and serves as the N-centred radical precursor. ß-Amino alcohols and ß-amino ethers bearing various functional groups are synthesized in good yields under mild conditions. Furthermore, the advantages of this strategy are greater safety, no additives, and easy to obtain raw materials.

16.
Chem Rec ; 23(11): e202300158, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37310416

RESUMO

Researching and utilizing radical intermediates in organic synthetic chemistry have innovated discoveries in methodology and theory. Reactions concerning free radical species opened new pathways beyond the frame of the two-electron mechanism while commonly characterized as rampant processes lacking selectivity. As a result, research in this field has always focused on the controllable generation of radical species and determining factors of selectivity. Metal-organic frameworks (MOFs) have emerged as compelling candidates as catalysts in radical chemistry. From a catalytic point of view, the porous nature of MOFs entails an inner phase for the reaction that could offer possibilities for the regulation of reactivity and selectivity. From a material science perspecti ve, MOFs are organic-inorganic hybrid materials that integrate functional units in organic compounds and complex forms in the tunable long-ranged periodic structure. In this account, we summarized our progress in the application of MOFs in radical chemistry in three parts: (1) The generation of radical species; (2) The weak interactions and site selectivity; (3) Regio- and stereo-selectivity. The unique role of MOFs play in these paradigms is demonstrated in a supramolecular narrative through the analyses of the multi-constituent collaboration within the MOF and the interactions between MOFs and the intermediates during the reactions.

17.
Chem Commun (Camb) ; 59(54): 8456-8459, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37337856

RESUMO

Herein, we created defects on NH2-MIL-125 to form more nodes of grafted metals, and synthesized a series of hybrid materials (Cu/d-NH2-MIL-125 and CuNPs/d-NH2-MIL-125 with 1,2, and 4 wt % of Cu nanoparticles) that were used as photocatalysts of the hydrogen evolution reaction and dehydrogenation of tetrahydroisoquinoline. At the optimal relative amount of Cu, namely 2 wt %, the hydrogen evolution reaction and dehydrogenation of tetrahydroisoquinoline showed rates of 1326.55 µmol g-1 h-1 and 427.15 µmol g-1 h-1, respectively. This new photocatalyst could effectively improve the e-/h+ separation efficiency, enriching the investigation of MOFs in the field of photocatalytic hydrogen evolution.

18.
J Am Chem Soc ; 145(27): 14766-14775, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37366343

RESUMO

Investigation on the interactions between enantiomers of chiral drugs and biomolecules can help precisely understand their biological behaviors in vivo and provide insights into the design of new drugs. Herein, we designed and synthesized a pair of optically pure, cationic, double-stranded dinuclear Ir(III)-metallohelices (Λ2R4-H and Δ2S4-H), and their dramatic enantiomer-dependent photodynamic therapy (PDT) responses were thoroughly studied in vitro and in vivo. Compared to the mononuclear enantiomeric or racemic [Ir(ppy)2(dppz)][PF6] (Λ-/Δ-Ir, rac-Ir) that with high dark toxicity and low photocytotoxicity index (PI) values, both of the optically pure metallohelices displayed negligible toxicity in the dark while exhibiting very distinctive light toxicity upon light irradiation. The PI value of Λ2R4-H was approximately 428, however, Δ2S4-H significantly reached 63,966. Interestingly, only Δ2S4-H was found to migrate from mitochondria to nucleus after light irradiation. Further proteomic analysis verified that Δ2S4-H activated the ATP-dependent migration process after light irradiation, and subsequently inhibited the activities of the nuclear proteins such as superoxide dismutase 1 (SOD1) and eukaryotic translation initiation factor 5A (EIF5A) to trigger the accumulation of superoxide anions and downregulate mRNA splicing processes. Molecular docking simulations suggested that the interactions between metallohelices and nuclear pore complex NDC1 dominated the migration process. This work presents a new kind of Ir(III) metallohelices-based agent with the highest PDT efficacy, highlights the importance of metallohelices' chirality, and provides inspirations for the future design of chiral helical metallodrugs.


Assuntos
Núcleo Celular , Proteômica , Simulação de Acoplamento Molecular , Estereoisomerismo , Irídio
19.
Dalton Trans ; 52(26): 8857-8863, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37350344

RESUMO

In this research, we synthesized CdS nanoparticle-doped metal-organic frameworks (CdS@DUT-52) with different contents using a solvothermal method. CdS@DUT-52 possesses strong light absorption ability and effective electron-hole separation properties, which was proved by performing UV-vis spectroscopy and photoelectrochemical testing. It was used to trigger the photooxidation of amines, sulfides, and alcohols to produce the corresponding imines, sulfoxides, and aldehydes in the presence of air or oxygen, exhibiting considerable yields of products under visible light irradiation compared with a single component.

20.
Inorg Chem ; 62(26): 10359-10368, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37339366

RESUMO

In this work, a novel 3D lanthanide metal-organic framework (Ln-MOF) Nd-cdip (H4cdip = 5,5'-carbonyldiisophthalic acid) was successfully synthesized, which could be used as an efficient heterogeneous catalyst for cyanosilylation and the synthesis of 2,3-dihydroquinazolin-4(1H)-one derivatives at room temperature based on the Lewis acid sites in the channels of the MOF. Moreover, Nd-cdip had an excellent turnover number (500) for catalyzing cyanosilylation in no solvent condition. Nd-cdip could be reused in both of the above-mentioned reactions at least five times without a significant decrease in yield. The possible mechanism of cyanosilylation catalyzed by Nd-cdip was studied by using the luminescence properties of Tb-cdip, which has the same structure and functions as Nd-cdip. Furthermore, both reactions catalyzed by Nd-cdip were fitted to zero-order dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA