Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Cell Mol Med ; 14(12): 2771-9, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20586830

RESUMO

The concept of regenerating diseased myocardium by implanting engineered heart tissue (EHT) is intriguing. Yet it was limited by immune rejection and difficulties to be generated at a size with contractile properties. Somatic cell nuclear transfer is proposed as a practical strategy for generating autologous histocompatible stem (nuclear transferred embryonic stem [NT-ES]) cells to treat diseases. Nevertheless, it is controversial as NT-ES cells may pose risks in their therapeutic application. EHT from NT-ES cell-derived cardiomyocytes was generated through a series of improved techniques in a self-made mould to keep the EHTs from contraction and provide static stretch simultaneously. After 7 days of static and mechanical stretching, respectively, the EHTs were implanted to the infarcted rat heart. Four weeks after transplantation, the suitability of EHT in heart muscle repair after myocardial infarction was evaluated by histological examination, echocardiography and multielectrode array measurement. The results showed that large (thickness/diameter, 2-4 mm/10 mm) spontaneously contracting EHTs was generated successfully. The EHTs, which were derived from NT-ES cells, inte grated and electrically coupled to host myocardium and exerted beneficial effects on the left ventricular function of infarcted rat heart. No teratoma formation was observed in the rat heart implanted with EHTs for 4 weeks. NT-ES cells can be used as a source of seeding cells for cardiac tissue engineering. Large contractile EHT grafts can be constructed in vitro with the ability to survive after implantation and improve myocardial performance of infarcted rat hearts.


Assuntos
Células-Tronco Embrionárias/citologia , Infarto do Miocárdio/cirurgia , Miócitos Cardíacos/fisiologia , Regeneração , Engenharia Tecidual/métodos , Transplante de Tecidos , Animais , Coração/fisiologia , Camundongos , Contração Miocárdica , Técnicas de Transferência Nuclear , Ratos , Transplante Autólogo
2.
Tissue Eng Part A ; 16(4): 1303-15, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19905874

RESUMO

The transplantation of embryonic stem cells could improve cardiac function but was limited by immune rejection as well as low cell retention and survival within the ischemic tissues. The somatic cell nuclear transfer (SCNT) is practical to generate autologous histocompatible stem (nuclear-transferred embryonic stem [NTES]) cells for diseases, but NTES may be arguably unsafe for therapeutic application. The temperature-responsive chitosan hydrogel is a suitable matrix in cell transplantation. As the scaffold, chitosan hydrogel was coinjected with NTES cells into the left ventricular wall of rat infarction models. Detailed histological analysis and echocardiography were performed to determine the structure and functional consequences of transplantation. The myocardial performance in SCNT- and fertilization-derived mouse ES cell transplantation with chitosan hydrogel was also compared. The results showed that both the 24-h cell retention and 4-week graft size were significantly greater in the NTES + chitosan group than that of NTES + phosphate-buffered saline (PBS) group (p < 0.01). The NTES cells might differentiate into cardiomyocytes in vivo. The heart function improved significantly in the chitosan + NTES group (fractional shortening: 28.7% +/- 2.8%) compared with that of PBS + NTES group (fractional shortening: 25.2% +/- 2.9%) at 4 weeks after transplantation (p < 0.01). In addition, the arteriole/venule densities within the infarcted area improved significantly in the chitosan + NTES group (280 +/- 17/mm(2)) compared with that of PBS + NTES group (234 +/- 16/mm(2)) at 4 weeks after transplantation (p < 0.01). There was no difference in the myocardial performance in SCNT- and fertilization-derived mouse ES cell transplantation with chitosan hydrogel. The NTES cells with chitosan hydrogel have been proved to possess therapeutic potential to improve the function of infarcted heart. Thus the method of in situ injectable tissue engineering is promising clinically.


Assuntos
Células-Tronco Embrionárias/transplante , Infarto do Miocárdio/terapia , Miócitos Cardíacos/transplante , Engenharia Tecidual/métodos , Animais , Sequência de Bases , Técnicas de Cultura de Células , Diferenciação Celular , Quitosana , Primers do DNA/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Feminino , Fertilização , Hidrogéis , Camundongos , Contração Miocárdica , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Técnicas de Transferência Nuclear , Ratos , Ratos Sprague-Dawley , Temperatura , Alicerces Teciduais , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA