Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 668, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635376

RESUMO

With the development of high-integration and high-power electronics, the lack of matching chip connecting materials that can withstand high temperatures has been a challenge. In this manuscript, a Cu@Cu6Sn5 core-shell bimetallic particles (approx. 1 µm in diameter) are successfully prepared and introduced as a new solder material for the packaging of power devices to obtain a Cu3Sn all-IMC solder joint. The joint consisted mainly of equiaxed Cu3Sn grains, and a small portion of columnar Cu3Sn grains. In columnar-type growth, Sn is the dominant diffusing species, which comes from the depletion of Sn in Cu6Sn5. The depleted Cu6Sn5 is transformed into columnar Cu3Sn. In equiaxed-type growth, Cu is the dominant diffusing species. Cu reacts with Cu6Sn5 to grow a Cu3Sn layer. This conclusion was confirmed by the orientation relationship. The equiaxed Cu3Sn grain nucleates at the Cu/Cu3Sn interface have an orientation relationship with the Cu substrate. Columnar Cu3Sn grains at the Cu6Sn5/Cu3Sn interface have an orientation relationship with Cu6Sn5.

2.
Nanomaterials (Basel) ; 12(22)2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36432370

RESUMO

At present, composite solder pastes are getting a lot of attention, especially composite Sn based solders reinforced by nanoparticles. Indeed, CoSn3 is a strong nucleating agent of Sn crystal, which has potential application value in the field of electronic packaging. However, there is no reliable synthetic path for CoSn3 nanoparticles at present. In this article, a chemical synthesis method for CoSn3 nanoparticles is developed. Here, CoCl2 and SnCl2 are reduced by NaHB4 in triethylene glycol (TEG), dispersed by ultrasonics, and heated to 350 °C in a tube furnace for growth. The CoSn3 nanoparticles with a diameter of about 150 nm are obtained by heating at 350 °C for 10 min. The CoSn3 nanoparticles undergo a step reaction in the process of synthesis and go through different stages of merging and annexation during their growth. The crystal growth behavior and the process of orientation change during the nucleation and growth of CoSn3 nanoparticles are studied, especially the two growth mechanisms, namely OU (orientation unified) and OA (orientation attached). By mixing CoSn3 nanoparticles with SAC305, we obtain a kind of strengthened composite soldering paste. There are obvious six-fold cyclic twins in the joints made by this soldering paste.

3.
Materials (Basel) ; 15(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35160861

RESUMO

A 3-5 µm Cu@Sn core-shell powder was prepared by chemical plating. Based on the mixture of this Cu@Sn and Ag NPs (nanoparticles), a soldering material for third-generation semiconductors was prepared. The joints prepared with this soldering material had a shear strength of over 40 MPa at 25 °C. This joint did not fail after more than 600 thermal cycles from -40 °C to 140 °C. The special feature of this joint is that the energy potential difference between nanoparticles and micron particles generated in the surface force field during reflow promoted the surface pre-melting of the particles by releasing the excess energy. By this mechanism, it was possible to reduce the porosity of the sintered layer. At the same time, due to the high surface activity energy of nano-silver, the diffusion of the Sn atoms was promoted, further enhancing the bond strength.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA