Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Nutr Food Res ; : e2300871, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704749

RESUMO

SCOPE: Prenatal nutrition imbalance correlates with developmental origin of cardiovascular diseases; however whether maternal high-sucrose diet (HS) during pregnancy causes vascular damage in renal interlobar arteries (RIA) from offspring still keeps unclear. METHODS AND RESULTS: Pregnant rats are fed with normal drinking water or 20% high-sucrose solution during the whole gestational period. Swollen mitochondria and distributed myofilaments are observed in vascular smooth muscle cells of RIA exposed to prenatal HS. Maternal HS increases phenylephrine (PE)-induced vasoconstriction in the RIA from adult offspring. NG-Nitro-l-arginine (L-Name) causes obvious vascular tension in response to PE in offspring from control group, not in HS. RNA-Seq of RIA is performed to reveal that the gene retinoid X receptor g (RXRg) is significantly decreased in the HS group, which could affect vascular function via interacting with PPARγ pathway. By preincubation of RIA with apocynin (NADPH inhibitor) or capivasertib (Akt inhibitor), the results indicate that ROS and Akt are the vital important factors to affect the vascular function of RIA exposure to prenatal HS. CONCLUSION: Maternal HS during the pregnancy increases PE-mediated vasoconstriction of RIA from adult offspring, which is mainly related to the enhanced Akt and ROS regulated by the weakened PPARγ-RXRg.

2.
Dev Cell ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569547

RESUMO

The ability of cells to perceive and respond to mechanical cues is essential for numerous biological activities. Emerging evidence indicates important contributions of organelles to cellular mechanosensitivity and mechanotransduction. However, whether and how the endoplasmic reticulum (ER) senses and reacts to mechanical forces remains elusive. To fill the knowledge gap, after developing a light-inducible ER-specific mechanostimulator (LIMER), we identify that mechanostimulation of ER elicits a transient, rapid efflux of Ca2+ from ER in monkey kidney COS-7 cells, which is dependent on the cation channels transient receptor potential cation channel, subfamily V, member 1 (TRPV1) and polycystin-2 (PKD2) in an additive manner. This ER Ca2+ release can be repeatedly stimulated and tuned by varying the intensity and duration of force application. Moreover, ER-specific mechanostimulation inhibits ER-to-Golgi trafficking. Sustained mechanostimuli increase the levels of binding-immunoglobulin protein (BiP) expression and phosphorylated eIF2α, two markers for ER stress. Our results provide direct evidence for ER mechanosensitivity and tight mechanoregulation of ER functions, placing ER as an important player on the intricate map of cellular mechanotransduction.

3.
Proc Natl Acad Sci U S A ; 121(14): e2217019121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38547062

RESUMO

Mitochondria constantly fuse and divide for mitochondrial inheritance and functions. Here, we identified a distinct type of naturally occurring fission, tail-autotomy fission, wherein a tail-like thin tubule protrudes from the mitochondrial body and disconnects, resembling autotomy. Next, utilizing an optogenetic mitochondria-specific mechanostimulator, we revealed that mechanical tensile force drives tail-autotomy fission. This force-induced fission involves DRP1/MFF and endoplasmic reticulum tubule wrapping. It redistributes mitochondrial DNA, producing mitochondrial fragments with or without mitochondrial DNA for different fates. Moreover, tensile force can decouple outer and inner mitochondrial membranes, pulling out matrix-excluded tubule segments. Subsequent tail-autotomy fission separates the matrix-excluded tubule segments into matrix-excluded mitochondrial-derived vesicles (MDVs) which recruit Parkin and LC3B, indicating the unique role of tail-autotomy fission in segregating only outer membrane components for mitophagy. Sustained force promotes fission and MDV biogenesis more effectively than transient one. Our results uncover a mechanistically and functionally distinct type of fission and unveil the role of tensile forces in modulating fission and MDV biogenesis for quality control, underscoring the heterogeneity of fission and mechanoregulation of mitochondrial dynamics.


Assuntos
Proteínas de Membrana , Dinâmica Mitocondrial , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Mitocôndrias/genética , DNA Mitocondrial , Controle de Qualidade , Dinaminas/genética
4.
J Am Chem Soc ; 145(28): 15218-15229, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37428960

RESUMO

The natural extracellular matrix, with its heterogeneous structure, provides a stable and dynamic biophysical framework and biochemical signals to guide cellular behaviors. It is challenging but highly desirable to develop a synthetic matrix that emulates the heterogeneous fibrous structure with macroscopic stability and microscopical dynamics and contains inductive biochemical signals. Herein, we introduce a peptide fiber-reinforced hydrogel in which the stiff ß-sheet fiber functions as a multivalent cross-linker to enhance the hydrogel's macroscopic stability. The dynamic imine cross-link between the peptide fiber and polymer network endows the hydrogel with a microscopically dynamic network. The obtained fibrillar nanocomposite hydrogel, with its cell-adaptable dynamic network, enhances cell-matrix and cell-cell interactions and therefore significantly promotes the mechanotransduction, metabolic energetics, and osteogenesis of encapsulated stem cells. Furthermore, the hydrogel can codeliver a fiber-attached inductive drug to further enhance osteogenesis and bone regeneration. We believe that our work provides valuable guidance for the design of cell-adaptive and bioactive biomaterials for therapeutic applications.


Assuntos
Hidrogéis , Mecanotransdução Celular , Hidrogéis/química , Biomimética , Regeneração Óssea , Peptídeos/química , Osteogênese
5.
Opt Lett ; 48(2): 395-398, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36638466

RESUMO

Optical diffraction tomography (ODT) has gradually become a popular label-free imaging technique that offers diffraction-limited resolution by mapping an object's three-dimensional (3D) refractive index (RI) distribution. However, there is a lack of comprehensive quantitative image assessment metrics in ODT for studying how various experimental conditions influence image quality, and subsequently optimizing the experimental conditions. In this Letter, we propose to standardize the image assessment in ODT by proposing a set of metrics, including signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and structural distinguishability (SD). To test the feasibility of the metrics, we performed experiments on angle-scanning ODT by varying the number of illumination angles, RI contrast of samples, sample feature sizes, and sample types (e.g., standard polystyrene beads and 3D printed structures) and evaluated the RI tomograms with SNR, CNR, and SD. We further quantitatively studied how image quality can be improved, and tested the image assessment metrics on subcellular structures of living cells. We envision the proposed image assessment metrics may greatly benefit end-users for assessing the RI tomograms, as well as experimentalists for optimizing ODT instruments.


Assuntos
Tomografia Óptica , Tomografia Óptica/métodos , Refratometria , Razão Sinal-Ruído , Iluminação
6.
Neural Regen Res ; 17(1): 25-30, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34100422

RESUMO

Dynamic protein-protein interactions are essential for proper cell functioning. Homo-interaction events-physical interactions between the same type of proteins-represent a pivotal subset of protein-protein interactions that are widely exploited in activating intracellular signaling pathways. Capacities of modulating protein-protein interactions with spatial and temporal resolution are greatly desired to decipher the dynamic nature of signal transduction mechanisms. The emerging optogenetic technology, based on genetically encoded light-sensitive proteins, provides promising opportunities to dissect the highly complex signaling networks with unmatched specificity and spatiotemporal precision. Here we review recent achievements in the development of optogenetic tools enabling light-inducible protein-protein homo-interactions and their applications in optical activation of signaling pathways.

7.
Cell Chem Biol ; 29(1): 109-119.e3, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34157274

RESUMO

Mitochondria, the powerhouse of the cell, are dynamic organelles that undergo constant morphological changes. Increasing evidence indicates that mitochondria morphologies and functions can be modulated by mechanical cues. However, the mechano-sensing and -responding properties of mitochondria and the relation between mitochondrial morphologies and functions are unclear due to the lack of methods to precisely exert mechano-stimulation on and deform mitochondria inside live cells. Here, we present an optogenetic approach that uses light to induce deformation of mitochondria by recruiting molecular motors to the outer mitochondrial membrane via light-activated protein-protein hetero-dimerization. Mechanical forces generated by motor proteins distort the outer membrane, during which the inner mitochondrial membrane can also be deformed. Moreover, this optical method can achieve subcellular spatial precision and be combined with different optical dimerizers and molecular motors. This method presents a mitochondria-specific mechano-stimulator for studying mitochondria mechanobiology and the interplay between mitochondria shapes and functions.


Assuntos
Luz , Mitocôndrias/metabolismo , Animais , Linhagem Celular , Feminino , Humanos , Camundongos , Imagem Óptica
8.
J Mol Biol ; 432(13): 3761-3770, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32422149

RESUMO

Brain-derived neurotrophic factor, via activation of tropomyosin receptor kinase B (TrkB), plays a critical role in neuronal proliferation, differentiation, survival, and death. Dysregulation of TrkB signaling is implicated in neurodegenerative disorders and cancers. Precise activation of TrkB signaling with spatial and temporal resolution is greatly desired to study the dynamic nature of TrkB signaling and its role in related diseases. Here we develop different optogenetic approaches that use light to activate TrkB signaling. Utilizing the photosensitive protein Arabidopsis thaliana cryptochrome 2, the light-inducible homo-interaction of the intracellular domain of TrkB in the cytosol or on the plasma membrane is able to induce the activation of downstream MAPK/ERK and PI3K/Akt signaling as well as the neurite outgrowth of PC12 cells. Moreover, we prove that such strategies are generalizable to other optical homo-dimerizers by demonstrating the optical TrkB activation based on the light-oxygen-voltage domain of aureochrome 1 from Vaucheria frigida. The results open up new possibilities of many other optical platforms to activate TrkB signaling to fulfill customized needs. By comparing all the different strategies, we find that the cryptochrome 2-integrated approach to achieve light-induced cell membrane recruitment and homo-interaction of intracellular domain of TrkB is most efficient in activating TrkB signaling. The optogenetic strategies presented are promising tools to investigate brain-derived neurotrophic factor/TrkB signaling with tight spatial and temporal control.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Glicoproteínas de Membrana/genética , Neurônios/metabolismo , Optogenética , Receptor trkB/genética , Animais , Proteínas de Arabidopsis/química , Morte Celular/efeitos da radiação , Diferenciação Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Criptocromos/química , Humanos , Luz , Neoplasias/genética , Neoplasias/patologia , Neuritos/efeitos da radiação , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Células PC12 , Fosfatidilinositol 3-Quinases/genética , Fosforilação/efeitos da radiação , Ratos , Transdução de Sinais/efeitos da radiação
9.
Proc Natl Acad Sci U S A ; 116(46): 23143-23151, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31591250

RESUMO

Surface topography profoundly influences cell adhesion, differentiation, and stem cell fate control. Numerous studies using a variety of materials demonstrate that nanoscale topographies change the intracellular organization of actin cytoskeleton and therefore a broad range of cellular dynamics in live cells. However, the underlying molecular mechanism is not well understood, leaving why actin cytoskeleton responds to topographical features unexplained and therefore preventing researchers from predicting optimal topographic features for desired cell behavior. Here we demonstrate that topography-induced membrane curvature plays a crucial role in modulating intracellular actin organization. By inducing precisely controlled membrane curvatures using engineered vertical nanostructures as topographies, we find that actin fibers form at the sites of nanostructures in a curvature-dependent manner with an upper limit for the diameter of curvature at ∼400 nm. Nanotopography-induced actin fibers are branched actin nucleated by the Arp2/3 complex and are mediated by a curvature-sensing protein FBP17. Our study reveals that the formation of nanotopography-induced actin fibers drastically reduces the amount of stress fibers and mature focal adhesions to result in the reorganization of actin cytoskeleton in the entire cell. These findings establish the membrane curvature as a key linkage between surface topography and topography-induced cell signaling and behavior.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Forma Celular , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Nanoestruturas
10.
ACS Synth Biol ; 7(7): 1685-1693, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-29975841

RESUMO

Nerve growth factor/tropomyosin receptor kinase A (NGF/TrkA) signaling plays a key role in neuronal development, function, survival, and growth. The pathway is implicated in neurodegenerative disorders including Alzheimer's disease, chronic pain, inflammation, and cancer. NGF binds the extracellular domain of TrkA, leading to the activation of the receptor's intracellular kinase domain. As TrkA signaling is highly dynamic, mechanistic studies would benefit from a tool with high spatial and temporal resolution. Here we present the design and evaluation of four strategies for light-inducible activation of TrkA in the absence of NGF. Our strategies involve the light-sensitive protein Arabidopsis cryptochrome 2 and its binding partner CIB1. We demonstrate successful recapitulation of native NGF/TrkA functions by optical induction of plasma membrane recruitment and homo-interaction of the intracellular domain of TrkA. This approach activates PI3K/AKT and Raf/ERK signaling pathways, promotes neurite growth in PC12 cells, and supports survival of dorsal root ganglion neurons in the absence of NGF. This ability to activate TrkA using light bestows high spatial and temporal resolution for investigating NGF/TrkA signaling.


Assuntos
Receptor trkA/metabolismo , Animais , Membrana Celular/metabolismo , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Gânglios Espinais/metabolismo , Fator de Crescimento Neural/metabolismo , Células PC12 , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/genética , Fosforilação/fisiologia , Ratos , Receptor trkA/genética , Transdução de Sinais
11.
Nat Commun ; 8(1): 547, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28916751

RESUMO

Arabidopsis cryptochrome 2 (CRY2) can simultaneously undergo light-dependent CRY2-CRY2 homo-oligomerization and CRY2-CIB1 hetero-dimerization, both of which have been widely used to optically control intracellular processes. Applications using CRY2-CIB1 interaction desire minimal CRY2 homo-oligomerization to avoid unintended complications, while those utilizing CRY2-CRY2 interaction prefer robust homo-oligomerization. However, selecting the type of CRY2 interaction has not been possible as the molecular mechanisms underlying CRY2 interactions are unknown. Here we report CRY2-CIB1 and CRY2-CRY2 interactions are governed by well-separated protein interfaces at the two termini of CRY2. N-terminal charges are critical for CRY2-CIB1 interaction. Moreover, two C-terminal charges impact CRY2 homo-oligomerization, with positive charges facilitating oligomerization and negative charges inhibiting it. By engineering C-terminal charges, we develop CRY2high and CRY2low with elevated or suppressed oligomerization respectively, which we use to tune the levels of Raf/MEK/ERK signaling. These results contribute to our understanding of the mechanisms underlying light-induced CRY2 interactions and enhance the controllability of CRY2-based optogenetic systems.Cryptochrome 2 (CRY2) can form light-regulated CRY2-CRY2 homo-oligomers or CRY2-CIB1 hetero-dimers, but modulating these interactions is difficult owing to the lack of interaction mechanism. Here the authors identify the interactions facilitating homo-oligomers and introduce mutations to create low and high oligomerization versions.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Criptocromos/química , Criptocromos/metabolismo , Motivos de Aminoácidos , Arabidopsis/química , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Criptocromos/genética , Dimerização , Luz , Optogenética , Ligação Proteica , Transdução de Sinais
12.
ACS Nano ; 11(8): 8320-8328, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28682058

RESUMO

The interface between cells and nonbiological surfaces regulates cell attachment, chronic tissue responses, and ultimately the success of medical implants or biosensors. Clinical and laboratory studies show that topological features of the surface profoundly influence cellular responses; for example, titanium surfaces with nano- and microtopographical structures enhance osteoblast attachment and host-implant integration as compared to a smooth surface. To understand how cells and tissues respond to different topographical features, it is of critical importance to directly visualize the cell-material interface at the relevant nanometer length scale. Here, we present a method for in situ examination of the cell-to-material interface at any desired location, based on focused ion beam milling and scanning electron microscopy imaging to resolve the cell membrane-to-material interface with 10 nm resolution. By examining how cell membranes interact with topographical features such as nanoscale protrusions or invaginations, we discovered that the cell membrane readily deforms inward and wraps around protruding structures, but hardly deforms outward to contour invaginating structures. This asymmetric membrane response (inward vs outward deformation) causes the cleft width between the cell membrane and the nanostructure surface to vary by more than an order of magnitude. Our results suggest that surface topology is a crucial consideration for the development of medical implants or biosensors whose performances are strongly influenced by the cell-to-material interface. We anticipate that the method can be used to explore the direct interaction of cells/tissue with medical devices such as metal implants in the future.

13.
PLoS One ; 11(4): e0153487, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27082641

RESUMO

Acute brain injuries such as ischemic stroke or traumatic brain injury often cause massive neural death and irreversible brain damage with grave consequences. Previous studies have established that a key participant in the events leading to neural death is the excessive production of reactive oxygen species. Protecting neuronal cells by activating their endogenous defense mechanisms is an attractive treatment strategy for acute brain injuries. In this work, we investigate how the precise timing of the Raf/ERK and the AKT pathway activation affects their protective effects against oxidative stress. For this purpose, we employed optogenetic systems that use light to precisely and reversibly activate either the Raf/ERK or the AKT pathway. We find that preconditioning activation of the Raf/ERK or the AKT pathway immediately before oxidant exposure provides significant protection to cells. Notably, a 15-minute transient activation of the Raf/ERK pathway is able to protect PC12 cells against oxidant strike that is applied 12 hours later, while the transient activation of the AKT pathway fails to protect PC12 cells in such a scenario. On the other hand, if the pathways are activated after the oxidative insult, i.e. postconditioning, the AKT pathway conveys greater protective effect than the Raf/ERK pathway. We find that postconditioning AKT activation has an optimal delay period of 2 hours. When the AKT pathway is activated 30min after the oxidative insult, it exhibits very little protective effect. Therefore, the precise timing of the pathway activation is crucial in determining its protective effect against oxidative injury. The optogenetic platform, with its precise temporal control and its ability to activate specific pathways, is ideal for the mechanistic dissection of intracellular pathways in protection against oxidative stress.


Assuntos
Citoproteção , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Estresse Oxidativo/fisiologia , Quinases raf/metabolismo , Animais , Citoproteção/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Células NIH 3T3 , Estresse Oxidativo/efeitos dos fármacos , Células PC12 , Ratos , Fatores de Tempo
14.
ACS Synth Biol ; 4(10): 1124-35, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-25985220

RESUMO

The photoreceptor cryptochrome 2 (CRY2) has become a powerful optogenetic tool that allows light-inducible manipulation of various signaling pathways and cellular processes in mammalian cells with high spatiotemporal precision and ease of application. However, it has also been shown that the behavior of CRY2 under blue light is complex, as the photoexcited CRY2 can both undergo homo-oligomerization and heterodimerization by binding to its dimerization partner CIB1. To better understand the light-induced CRY2 activities in mammalian cells, this article systematically characterizes CRY2 homo-oligomerization in different cellular compartments, as well as how CRY2 homo-oligomerization and heterodimerization activities affect each other. Quantitative analysis reveals that membrane-bound CRY2 has drastically enhanced oligomerization activity compared to that of its cytoplasmic form. While CRY2 homo-oligomerization and CRY2-CIB1 heterodimerization could happen concomitantly, the presence of certain CIB1 fusion proteins can suppress CRY2 homo-oligomerization. However, the homo-oligomerization of cytoplasmic CRY2 can be significantly intensified by its recruitment to the membrane via interaction with the membrane-bound CIB1. These results contribute to the understanding of the light-inducible CRY2-CRY2 and CRY2-CIB1 interaction systems and can be used as a guide to establish new strategies utilizing the dual optogenetic characteristics of CRY2 to probe cellular processes.


Assuntos
Criptocromos/química , Luz , Optogenética/métodos , Animais , Células COS , Chlorocebus aethiops , Dimerização , Humanos
15.
Chem Biol ; 22(5): 671-82, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25963241

RESUMO

Intracellular transport and distribution of organelles play important roles in diverse cellular functions, including cell polarization, intracellular signaling, cell survival, and apoptosis. Here, we report an optogenetic strategy to control the transport and distribution of organelles by light. This is achieved by optically recruiting molecular motors onto organelles through the heterodimerization of Arabidopsis thaliana cryptochrome 2 (CRY2) and its interacting partner CIB1. CRY2 and CIB1 dimerize within subseconds upon exposure to blue light, which requires no exogenous ligands and low intensity of light. We demonstrate that mitochondria, peroxisomes, and lysosomes can be driven toward the cell periphery upon light-induced recruitment of kinesin, or toward the cell nucleus upon recruitment of dynein. Light-induced motor recruitment and organelle movements are repeatable, reversible, and can be achieved at subcellular regions. This light-controlled organelle redistribution provides a new strategy for studying the causal roles of organelle transport and distribution in cellular functions in living cells.


Assuntos
Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Criptocromos/metabolismo , Optogenética , Animais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Transporte Biológico/efeitos da radiação , Células COS , Núcleo Celular/metabolismo , Chlorocebus aethiops , Criptocromos/genética , Cinesinas/metabolismo , Cinética , Luz , Lisossomos/metabolismo , Lisossomos/efeitos da radiação , Microscopia de Fluorescência , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Ligação Proteica , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética
16.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 39(12): 1266-70, 2014 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-25544162

RESUMO

OBJECTIVE: To observe the eff ect and mechanism of chronic high-fat diet on predation behavior in rats. METHODS: Ten female SD rats with 4-week-old were randomly divided into a normal control group (NC group, n=5) and a chronic high-fat diet group (HF group, n=5). The rats in the NC group received the regular diet while rats in the HF group were fed with high-fat diet. Fift een weeks later, the predation behavior of rats was evaluated by open fi eld test and food foraging tests. At the end of experiments, the rats were killed and brain tissues were collected for evaluation of c-Fos protein expression in anterior cingulate cortex by immunohistochemical assay. RESULTS: Th e predation behavior of rats in the HF group was signifi cantly impaired in the competitive or non-competitive food foraging test compared with the control rats (P< 0.001). Th e c-fos protein expression in anterior cingulate cortex of rats from the HF group was signifi cantly decreased (P< 0.001). CONCLUSION: Long time high-fat diet can aff ect the predation behavior of rats, which is related to dysfunction of neuron in anterior cingulate cortex.


Assuntos
Dieta Hiperlipídica , Comportamento Predatório , Animais , Feminino , Giro do Cíngulo/metabolismo , Giro do Cíngulo/fisiopatologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley
17.
PLoS One ; 9(3): e92917, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24667437

RESUMO

It has been proposed that differential activation kinetics allows cells to use a common set of signaling pathways to specify distinct cellular outcomes. For example, nerve growth factor (NGF) and epidermal growth factor (EGF) induce different activation kinetics of the Raf/MEK/ERK signaling pathway and result in differentiation and proliferation, respectively. However, a direct and quantitative linkage between the temporal profile of Raf/MEK/ERK activation and the cellular outputs has not been established due to a lack of means to precisely perturb its signaling kinetics. Here, we construct a light-gated protein-protein interaction system to regulate the activation pattern of the Raf/MEK/ERK signaling pathway. Light-induced activation of the Raf/MEK/ERK cascade leads to significant neurite outgrowth in rat PC12 pheochromocytoma cell lines in the absence of growth factors. Compared with NGF stimulation, light stimulation induces longer but fewer neurites. Intermittent on/off illumination reveals that cells achieve maximum neurite outgrowth if the off-time duration per cycle is shorter than 45 min. Overall, light-mediated kinetic control enables precise dissection of the temporal dimension within the intracellular signal transduction network.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Luz , Sistema de Sinalização das MAP Quinases/efeitos da radiação , Neuritos/metabolismo , Neuritos/efeitos da radiação , Quinases raf/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos da radiação , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/efeitos da radiação , Criptocromos/química , Criptocromos/metabolismo , Relação Dose-Resposta à Radiação , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/efeitos da radiação , Cinética , MAP Quinase Quinase Quinases/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Células NIH 3T3 , Fator de Crescimento Neural/farmacologia , Neuritos/efeitos dos fármacos , Células PC12 , Estrutura Terciária de Proteína , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/efeitos da radiação , Proteínas Proto-Oncogênicas c-raf , Ratos
18.
Oncol Res ; 20(9): 383-92, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23924922

RESUMO

Ovarian carcinomas are highly invasive, especially in the peritoneal cavity. SDF-1α and its receptor, CXCR4, play a crucial role in migration of cancer cells. Here, SDF-1α directed HO8910 cell migration, but not SKOV3 cells. After being educated to express CXCR4 in vivo or by treating with sCD40L, SDF-1α reexhibited the ability of directing SKOV3 cell migration, which could be antagonized by CXCR4-neutralizing antibody. Furthermore, concomitant expression of CXCR4/CD40 in ovarian carcinoma tissues had stronger correlation with pelvic metastasis than did each alone. It is suggest that SDF-1α acts through CXCR4 to induce ovarian cancer cell migration, which could be facilitated by CD40 activation. Simultaneously examining the expression of CXCR4 and CD40 will provide valuable diagnosis of pelvic metastasis for ovarian carcinomas.


Assuntos
Antígenos CD40/fisiologia , Carcinoma/patologia , Quimiocina CXCL12/fisiologia , Metástase Neoplásica/fisiopatologia , Proteínas de Neoplasias/fisiologia , Neoplasias Ovarianas/patologia , Receptores CXCR4/fisiologia , Animais , Biomarcadores Tumorais , Antígenos CD40/análise , Carcinoma/química , Carcinoma/secundário , Linhagem Celular Tumoral/metabolismo , Linhagem Celular Tumoral/patologia , Linhagem Celular Tumoral/transplante , Movimento Celular , Técnicas de Cocultura , Feminino , Humanos , Metástase Linfática , Camundongos , Camundongos Nus , Microscopia Confocal , Proteínas de Neoplasias/análise , Neoplasias Ovarianas/química , Neoplasias Pélvicas/química , Neoplasias Pélvicas/secundário , RNA Mensageiro/genética , RNA Neoplásico/genética , Receptores CXCR4/análise , Receptores CXCR4/biossíntese , Receptores CXCR4/genética
19.
Chem Asian J ; 5(10): 2266-70, 2010 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-20677323

RESUMO

Gold-directed polypyrrole (PPy) nanoarrays are fabricated by hydrogel-assisted nanotransfer edge printing (HnTEP) and electrochemical polymerization. Gold nanoarrays are fabricated through the HnTEP method, which involves metal deposition, hydrogel etching, and nanotransfer edge printing. By utilizing the well-positioned gold nanostructures, PPy nanoarrays with smooth morphology and controllable dimensions are fabricated through in situ electrochemical polymerization, the results of which are characterized by scanning electron microscopy and atomic force microscopy. A gas sensor based on PPy nanoarrays results in excellent sensing capabilities towards NH3 detection, especially the sensitivity and fast response. This method appears to be general and may aid in the future design and implementation of other active materials which can also be manipulated by the same procedure and serve as functional components for chemical sensing, optoelectronics, biodetection, and other applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA