Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 10(3)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38535183

RESUMO

In nature, plants frequently experience concurrent colonization with arbuscular mycorrhizal fungi (AMF) and grass endophytes (Epichloë). These two fungi assist in mineral uptake and stress tolerance by the host. Despite the abundance of recent studies exploring the individual functions of these fungi in diverse ecosystems, research on the effects of the interaction between these two symbiotic fungi on the host, particularly in agricultural production and ecological conservation. This review provides an overview of the current knowledge regarding the interaction between AMF and grass endophytes and their synergistic effects on host plants in response to abiotic and biotic stress, while also outlining prospects for future research in this field. This knowledge not only enhances our comprehension of complex interaction effects between the two fungi, but also facilitates the optimal utilization of fungal resources, contributing to ecological construction and higher agricultural production.

2.
J Fungi (Basel) ; 9(11)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37998868

RESUMO

Luobuma (Apocynum venetum and Poacynum hendersonni) is widely cultivated for environmental conservation, medicinal purposes and the textile industry. In 2018, a severe leaf spot disease that attacked the leaves of Luobuma was observed in plants cultivated in Yuzhong County, Gansu Province, China. Symptoms of the disease appeared as white or off-white spots surrounded by brown margins on the leaves of A. venetum. The spots expanded and covered a large area of the leaf, presenting as "cankers" with progression of the disease, leading to leaf death. The initial symptoms of the disease on P. hendersonni were similar to the symptoms of A. venetum, with a larger disease spot than A. venetum, and the spot was black and thicker. The aim of this study was to identify the fungal species and evaluate the effectiveness of fungicides (hymexazol and zhongshengmycin) against the pathogen in vitro. The fungi species that caused the new disease was identified as Alternaria tenuissima based on the morphological characteristics, pathogenicity tests, and phylogenetic analysis of the internal transcribed spacer (ITS) region, glyceraldehyde 3-phosphate dehydrogenase (gpd), translation elongation factor 1-alpha (TEF) and the histone 3 (H3) gene sequences. The findings showed that hymexazol fungicide can be used to control leaf spot disease. This is the first report on Luobuma leaf spot disease caused by A. tenuissima in China.

3.
New Phytol ; 239(1): 286-300, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37010085

RESUMO

Plant disease occurs simultaneously with insect attack. Arbuscular mycorrhizal fungi (AMF) modify plant biotic stress response. Arbuscular mycorrhizal fungi and pathogens may modify plant volatile organic compound (VOC) production and insect behavior. Nevertheless, such effects are rarely studied, particularly for mesocosms where component organisms interact with each other. Plant-mediated effects of leaf pathogen (Phoma medicaginis) infection on aphid (Acyrthosiphon pisum) infestation, and role of AMF (Rhizophagus intraradices) in modifying these interactions were elucidated in a glasshouse experiment. We evaluated alfalfa disease occurrence, photosynthesis, phytohormones, trypsin inhibitor (TI) and total phenol response to pathogen and aphid attack, with or without AMF, and aphid behavior towards VOCs from AMF inoculated and non-mycorrhizal alfalfa, with or without pathogen infection. AM fungus enhanced alfalfa resistance to pathogen and aphid infestation. Plant biomass, root : shoot ratio, net photosynthetic rate, transpiration rate, stomatal conductance, salicylic acid, and TI were significantly increased in AM-inoculated alfalfa. Arbuscular mycorrhizal fungi and pathogen significantly changed alfalfa VOCs. Aphids preferred VOCs of AM-inoculated and nonpathogen-infected to nonmycorrhizal and pathogen-infected alfalfa. We propose that AMF alter plant response to multiple biotic stresses in ways both beneficial and harmful to the plant host, providing a basis for strategies to manage pathogens and herbivore pests.


Assuntos
Afídeos , Micorrizas , Animais , Micorrizas/fisiologia , Afídeos/fisiologia , Medicago sativa/metabolismo , Medicago sativa/microbiologia , Pisum sativum
4.
Plants (Basel) ; 13(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38202360

RESUMO

Anthracnose (Colletotrichum spinaciae) and powdery mildew (Erysiphe pisi) are important diseases of common vetch (Vicia sativa) and often co-occur in the same plant. Here, we evaluate how C. spinaciae infection affects susceptibility to E. pisi, using sterilized and non-sterilized field soil to test the effect of resident soil microorganisms on the plant's immune response. Plants infected with C. spinaciae (C+) exhibited a respective 41.77~44.16% and 72.37~75.27% lower incidence and severity of powdery mildew than uninfected (C-) plants. Moreover, the net photosynthetic rate, transpiration rate, and stomatal conductance were higher in the C- plants than in the C+ plants prior to infection with powdery mildew. These differences were not recorded following powdery mildew infection. Additionally, the activities of superoxide dismutase, polyphenol oxidase, and catalase were higher in the C+ plants than in the C- plants. The resident soil microbiota did not affect the plant responses to both pathogens. By uncovering the mechanistic basis of plant immune response, our study informs integrated disease management in a globally important forage crop.

5.
Sci Rep ; 12(1): 21609, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36517497

RESUMO

Luobuma (Apocynum venetum, Poacynum pictum, and P. hendersonni) are perennial herbs widely used in the textile and medical industries and ecological restoration. In the summer of 2020, reddish-brown or off-white sunken shape necrotic lesions were observed on the stems and shoots of seven Luobuma ecotypes grown in the field in Yuzhong County, Gansu province of China, which is a limiting factor that affects the growth, function and application of Luobuma. To make clear whether the new symptoms were caused by a novel pathogen, a combined research in field and greenhouse was conducted. Based on the morphological and molecular analysis results, the pathogen causing the necrotic lesions was identified as Boeremia exigua var. rhapontica. The incidence and disease index of the seven ecotypes in the field ranged from 11.49 to 33.68% and 6.63 to 23.01, respectively, from 2020 to 2021. The results showed that the disease severity gradually increased with the growing season. According to the pathogenicity analysis of the eight ecotypes in the greenhouse, the ecotypes Pp-BMK and Pp-BMH were susceptible, while ecotype Pp-BMQ was resistant to Boeremia exigua var. rhapontica infection. Thus, the present study provides a theoretical basis for preventing and controlling the stem and leaf necrotic lesions disease on Luobuma by planting resistant varieties/ecotypes. To our knowledge, this is the first report of stem necrotic lesions and leaf spots on Luobuma caused by B. exigua var. rhapontica.


Assuntos
Apocynum , Ascomicetos , China , Ecótipo
6.
J Fungi (Basel) ; 8(12)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36547641

RESUMO

Pea aphid (Acyrthosiphon pisum) infestation leads to withering, reduced yield, and lower quality of the host plant. Arbuscular mycorrhizal (AM) fungi have been found to enhance their host plants' nutrient uptake, growth, and resistance to biotic stresses, including pathogen infection and insect pest infestation. Therefore, we evaluated the effects of AM fungus Rhizophagus intraradices on alfalfa defense responses to pea aphid infestation. Aphid infestation did not affect the colonization of AM fungus. The inoculation of AM fungus, on average, enhanced alfalfa catalase and the contents of salicylic acid and trypsin inhibitor by 101, 9.05, and 7.89% compared with non-mycorrhizal alfalfa, respectively. In addition, polyphenol oxidase activities significantly increased by six-fold after aphid infestation in mycorrhizal alfalfa. Moreover, the fungus significantly (p < 0.05) improved alfalfa shoot N content, net photosynthetic and transpiration rates, and shoot dry weight in aphid infected treatment. The aphid infestation changed the total volatile organic compounds (VOCs) in alfalfa, while AM fungus enhanced the contents of methyl salicylate (MeSA). The co-expression network analysis of differentially expressed genes (DEGs) and differentially expressed VOCs analysis showed that three DEGs, namely MS.gene23894, MS.gene003889, and MS.gene012415, positively correlated with MeSA both in aphid and AM fungus groups. In conclusion, AM fungus increased alfalfa's growth, defense enzyme activities, hormones, and VOCs content and up-regulated VOC-related genes to enhance the alfalfa's resistance following aphid infestation.

7.
J Clin Pharm Ther ; 47(8): 1201-1211, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35347725

RESUMO

WHAT IS KNOWN AND OBJECTIVE: Medication safety problem has always been the focus of healthcare providers and public health community scholars. As the backbone of the future society, the mastery of college students' knowledge to use medicine will directly affect the level of medication literacy (ML) of the public in the future. The purpose of this study was to investigate the current ML of college students in Shanxi Province and to identify its related factors. METHODS: A cluster random sampling method was utilized to select 800 college students from 10 universities in Shanxi province as participants from 21 March to 10 April 2020. After quality control, 763 valid questionnaires were collected (effective rate 95.4%). This study applied the ML scale adapted from the 14-item health literacy scale (HLS-14) to estimate ML, which contains functional ML, communicative ML and critical ML dimensions to estimate the ML situation. Then, we used structural equation modelling (SEM) to test the hypothesized relationship among three dimensions of ML, self-evaluated health status and safety medication science popularization activities on campus. RESULTS AND DISCUSSION: The results showed that the reliability and validity of the ML scale were good. The average score of ML level of college students in Shanxi Province was 44 points, and the interquartile range was 40-48 points (full score is 65 points). The proportion of high ML level was estimated at as low as 26.7%. 73.1% participants had an average level, and only 1 participant (0.1%) had a low level of ML. Univariate analysis showed that the ML level was significantly influenced by gender, universities, field of study, academic performance and ethnic group (p < 0.05). SEM showed that functional ML (λ = 0.01) and communicative ML (λ = 0.75) had a direct positive association with critical ML. Meanwhile, the model also had a mediating effect. Functional ML had an indirect positive association with critical ML through the mediating effect of communicative ML (λ = 0.11). In addition, both self-evaluated health status and safety medication science popularization activities on campus had an indirect positive association with critical ML through the mediating effect of functional ML and communicative ML. WHAT IS NEW AND CONCLUSION: The study revealed that the ML of most college students in Shanxi Province was at the average level. Among them, medical college student (including pharmacy, nursing, public health, preventive medicine, basic medicine and clinical medicine students), the Han nationality students (the students of China's majority ethnic group), students of good self-evaluated health status, and students who were more exposed to safety medication science popularization activities had a relatively higher ML level. Moreover, it highlighted the importance of self-evaluated health status and safety medication science popularization activities on campus to ML.


Assuntos
Letramento em Saúde , Estudantes , China , Estudos Transversais , Letramento em Saúde/métodos , Humanos , Reprodutibilidade dos Testes , Inquéritos e Questionários , Universidades
8.
Front Microbiol ; 13: 1074592, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36845970

RESUMO

Introduction: Arbuscular mycorrhizal (AM) fungi are important for the resistance of plants to insect infestation and diseases. However, the effect of AM fungal colonization of plants response to pathogen infection activated by pea aphid infestation is unknown. Pea aphid (Acyrthosiphon pisum) and the fungal pathogen Phoma medicaginis severely limit alfalfa production worldwide. Methods: This study established an alfalfa (Medicago sativa)-AM fungus (Rhizophagus intraradices)-pea aphid-P. medicaginis experimental system to clarify the effects of an AM fungus on the host plant response to insect infestation and subsequent fungal pathogen infection. Results: Pea aphid increased the disease incidence of P. medicaginis by 24.94%. The AM fungus decreased the disease index by 22.37% and enhanced alfalfa growth by increasing the uptake of total nitrogen and total phosphorus. The aphid induced polyphenol oxidase activity of alfalfa, and the AM fungus enhanced plant-defense enzyme activity against aphid infestation and subsequent P. medicaginis infection. In addition, the AM fungus increased the contents of jasmonic acid and abscisic acid in plants exposed to aphid infestation or pathogen infection. Abscisic acid and genes associated with the gene ontology term "hormone binding" were upregulated in aphid-infested or pathogen-infected alfalfa. Discussion: The results demonstrate that an AM fungus enhances plant defense and signaling components induced by aphid infestation, which may contribute to improved defense against subsequent pathogen infection.

9.
Front Microbiol ; 12: 664385, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335495

RESUMO

Fusarium oxysporum f. sp. medicaginis (Fom) and Rhizoctonia solani (Rs) are the major soil-borne fungal pathogens that pose severe threats to commercial alfalfa production in China. However, the effects of Fom and Rs co-infection on alfalfa and whether co-infection alters disease resistance responses among diverse varieties remain unknown. A collection of 80 alfalfa varieties (Medicago sativa) originated from seven countries were used to study the effects of Fom and Rs co-infection on alfalfa and host resistance responses. The co-infection resulted in more severe disease and reductions in growth and biomass allocation across varieties in comparison with either single infection by Fom or Rs; in addition, root morphology was much more strongly altered by the co-infection. Principal component analysis based on all plant traits showed that varieties under the co-infection were related to the single infection by Rs, being separated from Fom, and hierarchical clustering found differential response patterns among varieties upon co-infection compared with either single infection, with most varieties being highly susceptible to the co-infection. Furthermore, varieties that were most resistant to either single infection were not effective to co-infection, and there was no individual variety with resistance to both pathogens singly and co-infected. This study reveals for the first time that the co-infection by Fom and Rs alters disease resistance responses among diverse alfalfa varieties and provides useful information for developing alfalfa varieties with resistance to the co-occurrence of different soil-borne pathogens.

10.
Microorganisms ; 8(12)2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33276437

RESUMO

Perennial ryegrass (Lolium perenne) is widely cultivated around the world for turf and forage. However, the plant is highly susceptible to disease and is sensitive to drought. The present study aims to determine the effect of the fungal endophyte Epichloë festucae var. lolii of perennial ryegrass on the combined stresses of drought and disease caused by Bipolaris sorokiniana in the greenhouse. In the experiment, plants infected (E+) or not infected (E-) with the fungal endophyte were inoculated with Bipolaris sorokiniana and put under different soil water regimes (30%, 50%, and 70%). The control treatment consisted of E+ and E- plants not inoculated with B. sorokiniana. Plant growth, phosphorus (P) uptake, photosynthetic parameters, and other physiological indices were evaluated two weeks after pathogen infection. The fungal endophyte in E+ plants increased P uptake, plant growth, and photosynthetic parameters but decreased the malondialdehyde concentration, proline content, and disease incidence of perennial ryegrass (p < 0.05). E+ plants had the lowest disease incidence at 70% soil water (p < 0.05). The study demonstrates that the fungal endophyte E. festucae var. lolii is beneficial for plant growth and stress tolerance in perennial ryegrass exposed to the combined stresses of drought and B. sorokiniana.

11.
Plant Dis ; 104(10): 2571-2584, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32816625

RESUMO

In recent years in China, leaf spot caused by Colletotrichum species has been an emerging disease of Philodendron tatei cv. Congo. From 2016 to 2019, typical symptoms, appearing as circular or ovoid, sunken, and brown lesions with a yellow halo, were commonly observed on P. tatei cv. Congo in and around Lanzhou, Gansu Province, China. Conidiomata were often visible on infected leaf surfaces. Leaf disease incidence was approximately 5 to 20%. A total of 126 single-spored Colletotrichum isolates were obtained from leaf lesions. Multilocus phylogenetic relationships were analyzed based on seven genomic loci (ITS, ACT, GAPDH, HIS3, CAL, CHS-1, and TUB2) and the morphological characters of the isolates determined. These isolates were identified as three Colletotrichum species in this study. A further 93 isolates, accounting for 74% of all Colletotrichum isolates, were described as new species and named as Colletotrichum philodendricola sp. nov. after the host plant genus name, Philodendron; another two isolates were named as C. pseudoboninense sp. nov. based on phylogenetic and morphological relativeness to C. boninense; the other 31 isolates, belonging to the C. orchidearum species complex, were identified as a known species-C. orchidearum. Both novel species C. philodendricola and C. pseudoboninense belong to the C. boninense species complex. Pathogenicity tests by both spray and point inoculations confirmed that all three species could infect leaves of P. tatei cv. Congo. For spray inoculation, the mean infection rate of leaves on the three species was only 4.7% (0 to 12%), and the size on lesions was mostly 1 to 2 mm in length. For point inoculation, 30 days after nonwounding inoculation, the infection rate on leaves was 0 to 35%; in wounding inoculation, the infection rate of leaves was 35 to 65%; wounding in healthy leaves greatly enhanced the pathogenicity of these three species to P. tatei cv. Congo; however, the sizes of lesions among the three species were not significantly different. To our knowledge, this is the first report of Colletotrichum species associated with anthracnose diseases on P. tatei cv. Congo. Results obtained in this study will assist the disease prevention and appropriate management strategies.


Assuntos
Colletotrichum/genética , Philodendron , China , Congo , DNA Fúngico/genética , Filogenia , Doenças das Plantas , Virulência
12.
Front Microbiol ; 11: 542623, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33391193

RESUMO

Colletotrichum lentis Damm causes anthracnose in Vicia sativa L, otherwise known as common vetch. It was first reported in China in 2019. This study evaluates the effects of the arbuscular mycorrhizal (AM) fungus Sieverdingia tortuosa (N.C. Schenck & G.S. Sm.) Blaszk., Niezgoda, & B.T. Goto on growth and disease severity in common vetch. Our main finding is that the AM fungus increased root biomass and reduced anthracnose severity of common vetch. Responses correlated with defense, such as chitinase activity, polyphenol oxidase (PPO) activity, the concentrations of jasmonic acid and proline, and the expression of resistance-related genes (e.g., upregulated "signal transduction," "MAPK signaling pathway," "chitinase activity," "response to stress," and the KEGG pathways "phenylpropanoid biosynthesis," "MAPK signaling pathways," and "plant-pathogen interactions"), were also affected These findings provide insight into the mechanism by which this AM fungus regulates the defense response of common vetch to C. lentis.

13.
Mycorrhiza ; 29(6): 623-635, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31588522

RESUMO

Pea aphids (Acyrthosiphon pisum) are one of the most important insect pests of alfalfa (Medicago sativa). Arbuscular mycorrhizal (AM) fungi are important microorganisms of the agroecosystem that promote plant growth and improve plant resistance to abiotic and biotic stress. Little information is available on AM fungi-regulated defense responses of alfalfa to pea aphids. To better understand how alfalfa responds and to evaluate the impact of an AM fungus on aphid infestation, transcriptome sequencing was done and physiological parameters were analyzed. Our experiments showed that Rhizophagus intraradices can regulate plant response to aphids by promoting growth and increasing plant peroxidase (POD) and catalase (CAT) activities and salicylic acid (SA) concentration after aphid infestation. Transcriptome analysis showed that R. intraradices increased the expression of resistance-related genes, such as "WRKY transcription factor" and "Kunitz trypsin inhibitor." Additionally, GO terms "chitinase activity," "peroxidase activity," "defense response," and "response to biotic stimulus," and KEGG pathways "phenylpropanoid biosynthesis" and "phenylalanine metabolism" were significantly enriched in mycorrhizal fungus-inoculated plants and aphid-infested plants. These findings will improve our understanding about the impact of this AM fungus on alfalfa response to aphid feeding and will provide the basis for further research on plant defense against aphids.


Assuntos
Afídeos , Micorrizas , Animais , Medicago sativa , Pisum sativum , RNA-Seq
15.
Mycology ; 9(3): 223-232, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30181928

RESUMO

Powdery mildew caused by Erysiphe pisi is a major factor that affects the growth of standing milkvetch (Astragalus adsurgens). As arbuscular mycorrhizal fungi (AMF) have shown to be enhancing the resistance of plants to biotrophic pathogens such as powdery mildew, a study was carried out to look at the effects of three AMF, either singularly or in combination, on the growth of standing milkvetch and susceptibility to E. pisi. The results showed that the presence of AMF enhanced the growth of standing milkvetch even though their presence in the roots increased susceptibility to this foliage pathogen compared with plants having no AMF. This increase in growth of plants with severe infection of powdery mildew was especially surprising as leaves contained lower levels of chlorophyll than plants without AMF and had a greater concentration of malondialdehyde, an indicator of the damage of cell membrane. The effects on the extent of growth and powdery mildew enhancement differed inconsistently with the type of AMF in roots. The effects on growth and powdery mildew were not related to intensity of AMF colonisation. The peroxidase (POD) was consistently higher activity (15% to 72%) in plants with AMF than plants without them.

16.
Mycorrhiza ; 28(2): 159-169, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29274039

RESUMO

Leaf spot of perennial ryegrass (Lolium perenne) caused by Bipolaris sorokiniana is an important disease in temperate regions of the world. We designed this experiment to test for the combined effects of the arbuscular mycorrhizal (AM) fungus Claroideoglomus etunicatum and the grass endophyte fungus Epichloë festucae var. lolii on growth and disease occurrence in perennial ryegrass. The results show that C. etunicatum increased plant P uptake and total dry weight and that this beneficial effect was slightly enhanced when in association with the grass endophyte. The presence in plants of both the endophyte and B. sorokiniana decreased AM fungal colonization. Plants inoculated with B. sorokiniana showed the typical leaf spot symptoms 2 weeks after inoculation and the lowest disease incidence was with plants that were host to both C. etunicatum and E. festucae var. lolii. Plants with these two fungi had much higher activity of peroxidases (POD), superoxide dismutase (SOD) and catalase (CAT) and lower values of malondialdehyde (MDA) and hydrogen peroxide (H2O2). The AM fungus C. etunicatum and the grass endophyte fungus E. festucae var. lolii have the potential to promote perennial ryegrass growth and resistance to B. sorokiniana leaf spot.


Assuntos
Ascomicetos/fisiologia , Lolium/crescimento & desenvolvimento , Lolium/microbiologia , Micorrizas/fisiologia , Doenças das Plantas/prevenção & controle , Resistência à Doença , Epichloe/fisiologia , Estresse Oxidativo
17.
Plant Dis ; 99(1): 87-92, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30699744

RESUMO

A crown and root rot complex was detected in the alfalfa (Medicago sativa 'Longdong') fields of Huanxian County. The symptoms of the diseased plants were characterized, and 11 fungal species were obtained from the roots. These fungi included isolates that resembled the genus Microdochium. An isolate of this type, designated MP313, was proven to infect alfalfa, fulfilling Koch's postulates. Isolate MP313 was examined by microscopy and the morphological characteristics indicated that it was similar to members of the genus Microdochium. Sequence analyses of the 28S large subunit as well as the internal transcribed spacer (ITS) region of the ribosomal DNA (rDNA) of MP313 revealed 98 to 100% similarity to the corresponding regions of M. tabacinum. A polymerase chain reaction assay based on the ITS region of the rDNA was developed to amplify a 304-bp fragment from DNA concentrations as low as 20 fg/µl, which was sensitive enough to detect isolate MP313 in diseased root samples. Taken together, these results confirmed that M. tabacinum was one of a complex of fungi associated with crown and root rot in the alfalfa samples collected in Gansu Province. This is the first report of M. tabacinum being a pathogen of alfalfa in China.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA