Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol Pharmacol ; 108: 104436, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38599507

RESUMO

Plastics pose a hazard to the environment. Although plastics have toxicity, microplastics (MPs) and nanoplastics (NPs) are capable of interacting with the rest pollutants in the environment, so they serve as the carriers and interact with organic pollutants to modulate their toxicity, thus resulting in unpredictable ecological risks. PS-NPs and TDCIPP were used expose from 2 h post-fertilization (hpf) to 150 days post-fertilization (dpf) to determine the bioaccumulation of tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and its potential effects on neurodevelopment in F1 zebrafish (Danio rerio) offspring under the action of polystyrene nano plastics (PS-NPs). The exposure groups were assigned to TDCIPP (0, 0.4, 2 or 10 µg/L) alone group and the PS-NPs (100 µg/L) and TDCIPP co-exposed group. F1 embryos were collected and grown in clean water to 5 dpf post-fertilization. PS-NPs facilitated the bioaccumulation of TDCIPP in the gut, gill, head,gonad and liver of zebrafish in a sex-dependent manner and promoted the transfer of TDCIPP to their offspring, thus contributing to PS-NPs aggravated the inhibition of offspring development and neurobehavior of TDCIPP-induced. In comparison with TDCIPP exposure alone, the combination could notably down-regulate the levels of the dopamine neurotransmitter, whereas the levels of serotonin or acetylcholine were not notably different. This result was achieved probably because PS-NPs interfered with the TDCIPP neurotoxic response of zebrafish F1 offspring not through the serotonin or acetylcholine neurotransmitter pathway. The increased transfer of TDCIPP to the offspring under the action of PS-NPs increased TDCIPP-induced transgenerational developmental neurotoxicity, which was proven by a further up-regulation/down-regulation the key gene and protein expression related to dopamine synthesis, transport, and metabolism in F1 larvae, in contrast to TDCIPP exposure alone. The above findings suggested that dopaminergic signaling involvement could be conducive to the transgenerational neurodevelopmental toxicity of F1 larval upon parental early co-exposure to PS-NPs and TDCIPP.


Assuntos
Dopamina , Microplásticos , Transdução de Sinais , Poluentes Químicos da Água , Peixe-Zebra , Animais , Dopamina/metabolismo , Poluentes Químicos da Água/toxicidade , Transdução de Sinais/efeitos dos fármacos , Microplásticos/toxicidade , Masculino , Feminino , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/anormalidades , Compostos Organofosforados/toxicidade , Nanopartículas/toxicidade , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/etiologia , Poliestirenos/toxicidade
2.
BMC Chem ; 17(1): 146, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891592

RESUMO

In our previous study, the three-dimensional graphene-modified PbO2 (3DG-PbO2) anode was prepared for the effective degradation of perfluorooctanesulfonat (PFOS) by the electrochemical oxidation process. However, the mineralization efficiency of PFOS at the 3DG-PbO2 anode still needs to be further improved due to the recalcitrance of PFOS. Thus, in this study, the yttrium (Y) was doped into the 3DG-PbO2 film to further improve the electrochemical activity of the PbO2 anode. To optimize the doping amount of Y, three Y and 3DG codoped PbO2 anodes were fabricated with different Y3+ concentrations of 5, 15, and 30 mM in the electroplating solution, which were named Y/3DG-PbO2-5, Y/3DG-PbO2-15 and Y/3DG-PbO2-30, respectively. The results of morphological, structural, and electrochemical characterization revealed that doping Y into the 3DG-PbO2 anode further refined the ß-PbO2 crystals, increased the oxygen evolution overpotential and active sites, and reduced the electron transfer resistance, resulting in a superior electrocatalytic activity. Among all the prepared anodes, the Y/3DG-PbO2-15 anode exhibited the best activity for electrochemical oxidation of PFOS. After 120 min of electrolysis, the TOC removal efficiency was 80.89% with Y/3DG-PbO2-15 anode, greatly higher than 69.13% with 3DG-PbO2 anode. In addition, the effect of operating parameters on PFOS removal was analyzed by response surface, and the obtained optimum values of current density, initial PFOS concentration, pH, and Na2SO4 concentration were 50 mA/cm2, 12.21 mg/L, 5.39, and 0.01 M, respectively. Under the optimal conditions, the PFOS removal efficiency reached up to 97.16% after 40 min of electrolysis. The results of the present study confirmed that the Y/3DG-PbO2 was a promising anode for electrocatalytic oxidation of persistent organic pollutants.

3.
Environ Pollut ; 336: 122397, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37597732

RESUMO

Sulfamethoxazole (SMX) is a common antibiotic used mainly for bacterial treatment. In this study, a novel three-dimensional cobalt-manganese bimetallic layered double hydroxide graphene hydrogel (CoMn-LDHs/rGO) has been prepared for photo-assisted permonosulfate (PMS)-activated degradation of SMX in water. Compared with the CoMn-LDHs/rGO + PMS and CoMn-LDHs/rGO + Vis systems, the degradation effect of CoMn-LDHs/rGO + PMS + Vis system is the best, and the degradation effect of CoMn-LDHs/rGO system could reach more than 98% under the optimal conditions. After 10 cycles, the catalytic degradation performance of CoMn-LDHs/rGO system remained good, while effectively preventing the leaching of metal ions. Based on the synergistic effect of photocatalysis and PMS oxidation, electron spin resonance spectroscopy and quenching experiments showed that three active substances (•OH, •SO4- and O2•-) were involved in the degradation of SMX. Density functional theory and liquid chromatography-mass spectrometry (LC-MS) results further proposed the SMX degradation transformation calculation. As expected, the study of the reaction mechanism of 3D CoMn-LDHs/rGO assisted PMS activation under visible light provides an efficient and rapid method for the sustainable degradation of pollutants in water system.

4.
Sci Total Environ ; 863: 160818, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36502984

RESUMO

Over the past few years, persistent organic pollutants (POPs) exhibiting high ecotoxicity have been widely detected in the environment. Persulfate-oxidation hybrid system is one of the most widely used novel advanced oxidation techniques and is based on the persulfate generation of SO4-∙ and ∙OH from persulfate to degrade POPs. The overarching aim of this work is to provide a critical review of the variety of methods of peroxide activation (e.g., light activated persulfate, heat-activated persulfate, ultrasound-activated persulfate, electrochemically-activated persulfate, base-activated persulfate, transition metal activated persulfate, as well as Carbon based material activated persulfate). Specifically, through this article we make an attempt to provide the important characteristics and uses of main activated PS methods, as well as the prevailing mechanisms of activated PS to degrade organic pollutants in water. Finally, the advantages and disadvantages of each activation method are analyzed. This work clearly illustrates the benefits of different persulfate activation technologies, and explores persulfate activation in terms of Sustainable Development Goals, technical feasibility, toxicity assessment, and economics to facilitate the large-scale application of persulfate technologies. It also discusses how to choose the most suitable activation method to degrade different types of POPs, filling the research gap in this area and providing better guidance for future research and engineering applications of persulfates.

6.
Food Funct ; 12(21): 10700-10713, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34605504

RESUMO

Inflammatory bowel disease (IBD) is a chronic intestinal inflammation that is currently incurable. Increasing evidence indicates that supplementation with probiotics could improve the symptoms of IBD. It is scientifically significant to identify novel and valid strains for treating IBD. It has been reported that the probiotic Lactobacillus paracasei L9 (L9), which is identified from the gut of healthy centenarians, can modulate host immunity and plays an anti-allergic role. Here, we demonstrated that L9 alleviates the pathological phenotypes of experimental colitis by expanding the abundance of butyrate-producing bacteria. Oral administration of sodium butyrate in experimental colitis recapitulates the L9 anti-inflammatory phenotypes. Mechanistically, sodium butyrate ameliorated the inflammatory responses by inhibiting the IL-6/STAT3 signaling pathway in colitis. Overall, these findings demonstrated that L9 alleviates the DSS-induced colitis development by enhancing the abundance of butyrate-producing bacterial strains that produce butyrate to suppress the IL-6/STAT3 signaling pathway, providing new insight into a promising therapeutic target for the remission of IBD.


Assuntos
Colite/induzido quimicamente , Colite/terapia , Interleucina-6/metabolismo , Lacticaseibacillus paracasei , Probióticos/uso terapêutico , Fator de Transcrição STAT3/metabolismo , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacologia , Butiratos , Ácido Butírico/administração & dosagem , Ácido Butírico/farmacologia , Sulfato de Dextrana/toxicidade , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Antagonistas dos Receptores Histamínicos/administração & dosagem , Antagonistas dos Receptores Histamínicos/farmacologia , Inflamação/tratamento farmacológico , Interleucina-6/genética , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Fator de Transcrição STAT3/genética
7.
Aquat Toxicol ; 236: 105871, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34058436

RESUMO

Plastic is a globally recognized superwaste that can affect human health and wildlife when it accumulates and is amplified in the food chain. Microplastics (plastic particles < 5 mm) and nanoplastics (plastic particles < 100 nm) can interact with organic pollutants already present in the aquatic environment, potentially acting as carriers for pollutants entering organisms and thus influencing the bioavailability and toxicity of those pollutants. In this study, we investigated the transfer kinetics and transgenerational effects of exposure to tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and polystyrene nanoplastics (PS-NPs) in F1 offspring. At 90 days postfertilization, zebrafish (Danio rerio) strain AB was exposed to either TDCIPP (0, 0.47, 2.64, or 12.78 µg/L) or PS-NPs (10 mg/L) or their combination for 120 days. The results showed that TDCIPP and PS-NPs accumulated in the gut, gill, head, and liver of the zebrafish in a sex-dependent manner. The presence of PS-NPs promoted the bioaccumulation of TDCIPP in the adult fish and increased the parental transfer of TDCIPP to their offspring. We demonstrate that parental exposure to TDCIPP alone or in combination with PS-NPs induces thyroid disruption in adults, and then leads to thyroid endocrine disruption in their larval offspring. Reduced thyroxine (T4) and 3,5,3'-triiodothyronine (T3) levels contributed to the observed transgenerational thyroid dysfunction, which inhibited developmental growth and disturbed the transcription of genes and expression of proteins involved in the hypothalamic-pituitary-thyroid (HPT) axis in the F1 larvae. The increased transfer of TDCIPP to the offspring in the presence of PS-NPs also enhanced transgenerational thyroid endocrine disruption, demonstrated by a further reduction in T4 and the upregulation of thyroglobulin (tg), uridine diphosphate-glucuronosyltransferase (ugt1ab), thyroid-stimulating hormone (tshß), and thyroid hormone receptor (trα) expression in the F1 larvae compared with the effects of parental TDCIPP exposure alone. Overall, our results indicate that the presence of PS-NPs modifies the bioavailability of TDCIPP and aggravates transgenerational thyroid disruption in zebrafish.


Assuntos
Compostos Organofosforados/toxicidade , Poliestirenos/toxicidade , Glândula Tireoide/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Disruptores Endócrinos/toxicidade , Humanos , Larva/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fosfatos/metabolismo , Plásticos , Poliestirenos/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo , Tri-Iodotironina/metabolismo , Peixe-Zebra/metabolismo
8.
Environ Sci Pollut Res Int ; 27(35): 43656-43669, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32737782

RESUMO

This study aims at investigating the electrocatalytic oxidation of sodium pentachlorophenate (PCP-Na) using a novel nano-PbO2 powder anode. The nano-PbO2 powder (marked as HL-PbO2) was prepared by a simple hydrolysis process, and hydrothermal treatment was followed to improve the activity of HL-PbO2. The HL-PbO2 treated for 24 h by hydrothermal process (HL/HT-PbO2-24) was confirmed to possess higher crystallinity, higher oxygen evolution potential, and more active sites, resulting in stronger OH radical generation capacity and higher electrochemical activity. Compared with conventional electrodeposited PbO2 (ED-PbO2) anode, the HL/HT-PbO2-24 anode showed higher PCP-Na degradation rate. Under the same operating conditions, the mineralization current efficiency at HL/HT-PbO2-24 was 2.7 times than that at ED-PbO2. Five intermediates were detected in PCP-Na degradation solution and possible degradation mechanism of PCP-Na was discussed. In addition, the acute toxicity of PCP-Na degradation solution to zebrafish embryos and the oxidative stress induced in zebrafish embryos/larvae were studied to evaluate the ecological security of electrocatalytic oxidation of PCP-Na.


Assuntos
Óxidos , Poluentes Químicos da Água , Animais , Eletrodos , Oxirredução , Titânio , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
9.
Chemosphere ; 260: 127587, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32663673

RESUMO

In this work, a three-dimension grapnene-PbO2 (3DG-PbO2) composite anode was prepared using coelectrodeposition technology for electrocatalytic oxidation of perfluorooctane sulfonate (PFOS). The effect of 3DG on the surface morphology, structure and electrocatalytic activity of PbO2 electrode was investigated. The results indicated that the 3DG-PbO2-0.08 anode (3DG concentration in electrodeposition solution was 0.08 g L-1) possessed the best electrocatalytic activity due to its stronger ·OH radicals generation capacity, more active sites and smaller charge-transfer resistance. The degradation rate constant of PFOS on 3DG-PbO2-0.08 anode was 2.33 times than that of pure PbO2 anode. Additionally, the by-products formed in electrocatalytic degradation of PFOS were identified and a PFOS degradation pathway was proposed accordingly, which was dominated by the dissociation of -CF2- groups via the attack of ·OH radicals. Finally, the toxicity evolution of degradation solution was examined to evaluate the ecological risk of electrocatalytic oxidation of PFOS by acute toxicity assays to zebrafish embryos.


Assuntos
Ácidos Alcanossulfônicos/análise , Técnicas Eletroquímicas/métodos , Fluorocarbonos/análise , Grafite/química , Chumbo/química , Nanocompostos/química , Óxidos/química , Titânio/química , Poluentes Químicos da Água/análise , Ácidos Alcanossulfônicos/toxicidade , Animais , Eletrodos , Galvanoplastia , Embrião não Mamífero/efeitos dos fármacos , Fluorocarbonos/toxicidade , Oxirredução , Poluentes Químicos da Água/toxicidade , Peixe-Zebra
10.
Aquat Toxicol ; 225: 105546, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32574930

RESUMO

In natural environments, organisms are often exposed to several environmental pollutants at any one time, and the potential effects of such co-exposures on human and environmental health are of considerable concern. It is thought that multi-walled carbon nanotubes (MWCNTs) may interact with other pollutants in aquatic systems and induce considerably different effects compared with exposure to a single contaminant. The objective of this study was to evaluate the potential acute combined effects of mixtures of MWCNTs and 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) on embryonic development stages, oxidative stress, apoptosis and DNA damage in developing zebrafish (Danio rerio). The embryos were treated with BDE-47 (5, 10, and 50 µg/L) and MWCNTs (50 mg/L), either combined or individually, for 96 h. Following exposure, BDE-47 induced significant acute toxicity, while the MWCNTs exhibited slight toxicity. When compared with BDE-47-only exposure, the inhibited growth induced by BDE-47 was weakened in the presence of MWCNTs. Similarly, the levels of oxidative stress biomarkers (reactive oxygen species, superoxide dismutase, catalase activities and malondialdehyde), apoptosis (apoptosis rate, caspase-3 and caspase-9 activities) and DNA damage (comet assay and comet olive tails) decreased in the presence of MWCNTs compared to those exposed to BDE-47 alone. These results demonstrate that MWCNTs can weaken the developmental inhibition, oxidative stress, apoptosis and DNA damage induced by BDE-47 in the early stages of zebrafish development.


Assuntos
Éteres Difenil Halogenados/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Apoptose/efeitos dos fármacos , Caspase 3 , Ensaio Cometa , Dano ao DNA , Humanos , Malondialdeído , Nanotubos de Carbono/toxicidade , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio , Superóxido Dismutase/metabolismo , Peixe-Zebra/embriologia
11.
Onco Targets Ther ; 12: 4359-4377, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31213851

RESUMO

Background: Deferoxamine (DFO) is a commonly used iron chelator, which can reduce the iron levels in cells. DFO is normally used to treat iron-overload disease, including some types of cancer. However, our previous studies revealed that DFO treatment significantly increased the iron concentrations in triple-negative breast cancer cells (TNBCs) resulting in enhanced cell migration. But the mechanism of DFO-induced increasing iron uptake in aggressive TNBCs still remained unclear. Materials and methods: Iron metabolism-related proteins in aggressive breast cancer MDA-MB-231, HS578T and BT549 cells and nonaggressive breast cancer MCF-7 and T47D cells were examined by immunofluorescence and Western blotting. The possible regulatory mechanism was explored by Western blotting, co-incubation with neutralizing antibodies or inhibitors, and transwell assay. Results: In this study, we found that DFO treatment significantly increased the levels of iron uptake proteins, DMT1 and TfR1, in aggressive TNBCs. Moreover, both TfR1 and DMT1 expressed on cell membrane were involved in high iron uptake in TNBCs under DFO-induced iron deficient condition. For the possible regulatory mechanism, we found that DFO treatment could promote a high expression level of IL-6 in aggressive MDA-MB-231 cells. The activated IL-6/PI3K/AKT pathway upregulated the expression of iron-uptake related proteins, TfR1 and DMT1, leading to increased iron uptakes. Conclusion: We demonstrated that DFO could upregulate expression of TfR1 and DMT1 , which enhanced iron uptake via activating IL-6/PI3K/AKT signaling pathway in aggressive TNBCs.

13.
Proc Natl Acad Sci U S A ; 115(47): E11071-E11080, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30381455

RESUMO

Substantial rates of fetal loss plague all in vitro procedures involving embryo manipulations, including human-assisted reproduction, and are especially problematic for mammalian cloning where over 90% of reconstructed nuclear transfer embryos are typically lost during pregnancy. However, the epigenetic mechanism of these pregnancy failures has not been well described. Here we performed methylome and transcriptome analyses of pig induced pluripotent stem cells and associated cloned embryos, and revealed that aberrant silencing of imprinted genes, in particular the retrotransposon-derived RTL1 gene, is the principal epigenetic cause of pregnancy failure. Remarkably, restoration of RTL1 expression in pig induced pluripotent stem cells rescued fetal loss. Furthermore, in other mammals, including humans, low RTL1 levels appear to be the main epigenetic cause of pregnancy failure.


Assuntos
Metilação de DNA/genética , Impressão Genômica/genética , Células-Tronco Pluripotentes Induzidas/citologia , Complicações na Gravidez/genética , Proteínas Repressoras/genética , Retroelementos/genética , Animais , Transferência Embrionária/efeitos adversos , Embrião de Mamíferos/citologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/genética , Técnicas de Transferência Nuclear , Gravidez , Suínos
14.
Artigo em Inglês | MEDLINE | ID: mdl-29755643

RESUMO

Cancer cells exhibit an increasing iron demand associated with the tumor progression. But the mechanism of iron accumulation in the tumor microenvironment is still unclear. Tumor associated macrophages (TAMs) in the tumor microenvironment may act as extra iron source. However, evidence is still lacking in TAMs as iron donors. In the present study, we found that iron concentration was significantly increased at tumor metastatic stage, which could be attributed to up-regulated expression of lipocalin2 (Lcn2). TAMs in the microenvironment secreted Lcn2. Moreover, TAMs increased intracellular iron concentration in tumor cells via Lcn2 as transporter, which could be restored by Lcn2 antibody neutralization. In conclusion, TAMs increased intracellular iron concentration of the tumor cells via Lcn2 which acted as an iron transporter. Targeting Lcn2 secretion in TAMs to "starve cancer cells" could act as alternative option for tumor therapy.

15.
Environ Pollut ; 233: 612-622, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29107901

RESUMO

Interactions between organic toxicants and nano-particles in the aquatic environment may modify toxicant bioavailability and consequently the toxicant's fate and toxicity. To evaluate the potential impact of nano-titanium dioxide (TiO2) on the bio-concentration and reproductive endocrine disruption of tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) in fish, a comparative bioaccumulation study was conducted on zebrafish (Danio rerio, AB strain) treated with 0, 5.74, 23.6, or 90.7 µg L-1 TDCIPP alone or co-exposed to TDCIPP and 0.09 mg L-1 nano-TiO2 for 21 days. Nano-TiO2 can absorb TDCIPP and nano-TiO2 is taken up into zebrafish. Chemical measurements showed that TDCIPP was bio-concentrated in zebrafish, and the highest level was detected in the liver, followed by the brain and gonads. Compared with TDCIPP treatment, increased tissue burdens of both TDCIPP were observed in the liver, brain, and gonads suggesting that nano-TiO2 adsorbed TDCIPP and acted as a carrier facilitating the uptake and translocation of TDCIPP in tissues. Higher bio-concentration in the presence of nano-TiO2 resulted in a significant decrease in the hepatic-somatic index, gonad-somatic index and brain-somatic index in F0 females but not F0 males. Moreover, a further gender-dependent reduction in testosterone (T), estradiol (E2), follicle-stimulating hormone (FSH) and luteinizing hormone (LH), and induction of plasma vitellogenin (VTG) concentrations in adults were observed following co-exposure. Co-exposure also inhibited egg production and caused significant developmental toxicity in F1 larvae. The results obtained using this multi-marker approach suggested that nano-TiO2 is a carrier of TDCIPP and accelerated its bio-concentration in adult zebrafish, resulting in adverse reproduction outcomes.


Assuntos
Organofosfatos/toxicidade , Titânio/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/fisiologia , Animais , Disruptores Endócrinos/toxicidade , Estradiol , Feminino , Hormônio Foliculoestimulante , Gônadas/efeitos dos fármacos , Larva , Fígado/efeitos dos fármacos , Masculino , Fosfatos/farmacologia , Reprodução , Testosterona/sangue , Vitelogeninas , Poluentes Químicos da Água/metabolismo
16.
Biomed Res Int ; 2017: 6280972, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29098158

RESUMO

The root of Angelica sinensis (RAS) is a traditional Chinese medicine used for preventing and treating various diseases. In this study, we assessed RAS supplementation effects on body weight and the FTO gene expression and methylation status in a high-fat-diet (HFD) induced obese mouse model. Female obese mice were divided into groups according to RAS dosage in diet as follows: normal diet, HFD diet (HC), HFD with low-dosage RAS (DL), HFD with medium-dosage RAS (DM), and HFD with high-dosage RAS (DH). After RAS supplementation for 4 weeks, body weight suppression and FTO expression in DH mice were significantly higher than in HC mice, whereas no significant change in FTO expression was detected between DM and DL mice or in their offspring. Bisulfite sequencing PCR (BSP) revealed that the CpG island in the FTO promoter was hypermethylated up to 95.44% in the HC group, 91.67% in the DH group, and 90.00% in the normal diet group. Histological examination showed that adipocytes in the DH group were smaller than those in the HC group, indicating a potential role of RAS in obesity. This study indicated that RAS could ameliorate obesity induced by HFD and that the molecular mechanism might be associated with the expression of the FTO gene.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Medicamentos de Ervas Chinesas/administração & dosagem , Obesidade/tratamento farmacológico , Aumento de Peso/efeitos dos fármacos , Dioxigenase FTO Dependente de alfa-Cetoglutarato/antagonistas & inibidores , Angelica sinensis , Animais , Peso Corporal/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Medicamentos de Ervas Chinesas/química , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Obesos , Obesidade/metabolismo , Obesidade/patologia
17.
Gene ; 599: 92-98, 2017 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-27838456

RESUMO

We have previously reported that radix Angelica sinensis (RAS) suppressed body weight and altered the expression of the fat mass and obesity associated (FTO) gene in mice with high fat diet (HFD)-induced obesity. In the present study we performed RNA sequencing-mediated transcriptome analysis to elucidate the molecular mechanisms underlying the anti-obesogenic effects of RAS in mice. The results revealed that 36 differentially-expressed genes (DEGs) were identified in adipose tissues from the RAS supplementation group (DH) and control group (HC). These 36 DEGs were clustered into 297 functional gene ontology (GO) categories, among which several GO annotations and signaling pathways were associated with lipid homeostasis. Six out of the 36 DEGs were identified to be involved in lipid metabolism, with the APOA2 gene a potential anti-obesogenic influence. The expression pattern revealed by RNA-Seq was identical to the results of quantitative real-time PCR (qPCR). Therefore, RAS supplementation in HFD-induced obese mice was associated with an anti-obesogenic global transcriptomic response. This study provides insight into potential applications of RAS in obesity therapy.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Fármacos Antiobesidade/uso terapêutico , Medicamentos de Ervas Chinesas/uso terapêutico , Obesidade/tratamento farmacológico , Obesidade/genética , Fitoterapia , Angelica sinensis , Animais , Dieta Hiperlipídica/efeitos adversos , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Camundongos , Obesidade/etiologia , RNA Mensageiro/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
18.
Sci Rep ; 6: 34406, 2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27680388

RESUMO

Novel developments in X-ray based spectro-microscopic characterization techniques have increased the rate of acquisition of spatially resolved spectroscopic data by several orders of magnitude over what was possible a few years ago. This accelerated data acquisition, with high spatial resolution at nanoscale and sensitivity to subtle differences in chemistry and atomic structure, provides a unique opportunity to investigate hierarchically complex and structurally heterogeneous systems found in functional devices and materials systems. However, handling and analyzing the large volume data generated poses significant challenges. Here we apply an unsupervised data-mining algorithm known as DBSCAN to study a rare-earth element based permanent magnet material, Nd2Fe14B. We are able to reduce a large spectro-microscopic dataset of over 300,000 spectra to 3, preserving much of the underlying information. Scientists can easily and quickly analyze in detail three characteristic spectra. Our approach can rapidly provide a concise representation of a large and complex dataset to materials scientists and chemists. For example, it shows that the surface of common Nd2Fe14B magnet is chemically and structurally very different from the bulk, suggesting a possible surface alteration effect possibly due to the corrosion, which could affect the material's overall properties.

19.
Artigo em Inglês | MEDLINE | ID: mdl-25185701

RESUMO

Meigu goat (Capra hircus) is one of the indigenous goat breeds in China. Our research findings revealed that the entire mitochondrial genome of Meigu goat was 16,643 bp in length. The contents of A, C, T and G in the mitochondrial genome were 33.59%, 26.05%, 27.31% and 13.05%, respectively. The mitogenome of meigu goat contained 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes and 1 control region. Components of the Meigu goat's mitogenome were similar to those of other Capra hircus in gene arrangement and composition. These results could provide essential information for molecular phylogenetic and evolutionary analyses of domestic goats.


Assuntos
DNA Mitocondrial/química , Genoma Mitocondrial , Cabras/genética , Animais , Composição de Bases , Mapeamento Cromossômico , Dados de Sequência Molecular , Análise de Sequência de DNA
20.
Artigo em Inglês | MEDLINE | ID: mdl-25187040

RESUMO

In this study, we sequenced the entire mitochondrial genome of Boer goat. The mitogenome was 16,639 bp in length, comprised of 22 tRNA genes, 2 ribosomal RNA genes, 13 protein-coding genes and 1 putative control region. Almost all genes were encoded on the H-strand except the ND6 and eight tRNA genes. Most of the genes initiated with ATG, whereas ND2, ND3 and ND5 started with ATA. The total base composition of the mitogenome was 33.53% for A, 26.05% for C, 13.12% for T and 27.30% for G. These results provide a standard reference sequence for phylogenetic analyses among goats.


Assuntos
DNA Mitocondrial/química , Genoma Mitocondrial , Cabras/genética , Animais , Composição de Bases , Dados de Sequência Molecular , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA