Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Psychol ; 13: 952964, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36262449

RESUMO

This study examined consumers' psychological reactance, which is insufficiently explored in the literature. This research fills the gaps found in the literature reviewed and investigates how the psychological reactance of restaurant consumers developed because of social, temporal, and spatial distancing measures during COVID-19. This study also explored ways in which the restaurant industry can increase its compliance with COVID-19 restrictions in such a situation. We explored the effects of social, temporal, and spatial distancing on psychological reactance. We also identified the moderating effect of lockdown restrictions, which strengthen the psychological reactance developed because of (a) social distancing, (b) temporal distancing, and (c) spatial distancing. We collected data from restaurant consumers in Lahore. This study applied quantitative techniques (i.e., a test of normality, measurement model assessment, structural model assessment, and common method variance). The data were analyzed using IBM SPSS 25 and AMOS 24 and the results were interpreted and presented accordingly. This study added to the literature on psychological reactance, service management, and psychological distance. We could also help the restaurant industry overcome the challenges that occurred during the COVID-19 pandemic and the closures. This study could assist the restaurant industry to understand consumer behavior and attract potential consumers.

2.
Materials (Basel) ; 14(18)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34576366

RESUMO

For a long time, temperature control and crack prevention of mass concrete is a difficult job in engineering. For temperature control and crack prevention, the most effective and common-used method is to embed cooling pipe in mass concrete. At present, there still exists some challenges in the precise simulation of pipe cooling in mass concrete, which is a complex heat-flow coupling problem. Numerical simulation is faced with the problem of over-simplification and inaccuracy. In this study, precise simulation of heat-flow coupling of pipe cooling in mass concrete is carried out based on finite element software COMSOL Multiphysics 5.4. Simulation results are comprehensively verified with results from theoretical solutions and equivalent algorithms, which prove the correctness and feasibility of precise simulation. Compared with an equivalent algorithm, precise simulation of pipe cooling in mass concrete can characterize the sharp temperature gradient around cooling pipe and the temperature rise of cooling water along pipeline more realistically. In addition, the cooling effects and local temperature gradient under different water flow (0.60 m3/h, 1.20 m3/h, and 1.80 m3/h) and water temperature (5 °C, 10 °C, and 15 °C) are comprehensively studied and related engineering suggestions are given.

3.
Sci Rep ; 10(1): 13930, 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811901

RESUMO

This paper investigates the stabilization of expansive soil with hydroxy-aluminium (Al13) with Al/soil ratios of 0.10, 0.14, 0.18, 0.22 and 0.26 mmol/g. A series of laboratory tests were conducted to study the effects of Al13 on the mechanical properties of expansive soil, including Atterberg limits, grain size distribution, swell percent, swell pressure and unconsolidated-undrained (UU) triaxial strength. The results revealed that Al13 reduced the plasticity index, clay content and swelling potential and enhanced the shear strength of expansive soil. The minerals and micro-structural changes in the soil samples were also determined by X-ray diffraction (XRD) and scanning electron microscopy (SEM), and the stabilized soil showed a remarkable flocculated-agglomerated structure characterized by the densification of particle associations. The consistency of the changes in mechanical properties and micro-morphology indicated that expansive soil can be effectively improved with the use of Al13. Additionally, the optimum dosage of polynuclear hydroxy-Al (PHA) solution for stabilizing expansive soil was 0.18 mmol/g under the given properties of expansive soil and PHA utilized in this study.

4.
J Ethnopharmacol ; 246: 112247, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31542470

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Naozhenning granule (NZN), a widely traditional Chinese medicine (TCM) prescription with a long history of clinical, which is mainly used in the treatment of concussion, cerebral post-traumatic syndrome, consists of Di Huang (Radix of Rehmannia glutinosa (Gaertn.) DC.), Dang Gui (Radix of Angelica sinensis (Oliv.) Diels), Chen Pi (Pericarpium of Citrus reticulata Blanco), Dan shen (Radix of Salvia Miltiorrhiza Bunge.), Di Long (Pheretima aspergillum (E. Perrier)), Mu Dan Pi (Cortex of Paeonia suffruticosa Andrews), Suan Zao Ren (Semen of Ziziphus jujuba Mill.), Chuan Xiong (Rhizoma of Ligusticum striatum DC.), Zhu Ru (Phyllostachys nigra (Lodd. Ex Lindl.) Munro), Bai Zi Ren (Semen of Platycladus orientalis (L.) Franco) and Fu Ling (sclerotium of Poria cocos (Schw.)Wolf). AIM OF THE STUDY: This study aimed to unravel the mechanism and material basis of NZN against traumatic brain injury. MATERIALS AND METHODS: In this study, a 1H nuclear magnetic resonance (NMR) based metabolomic approach combined with systemsDock was employed to study the protective effect of NZN against traumatic brain injury using a cerebral concussion rat model. The morris water maze test and biochemical indexes were used to evaluate the efficacy of NZN. RESULTS: The results of morris water maze test suggested NZN can improve the spatial learning and memory of model rats, and the superoxide dismutas (SOD) and malonyldialdehyde (MDA) level indicated that the effect of NZN was related with the regulation of oxidative stress. Multivariate analysis revealed that the effect of NZN was related with regulation of 18 brain metabolites, and the corresponding metabolic pathways were further revealed by MetPA analysis. 13 serum absorbed components were found to hit the targets both related with the metabolic regulation and cerebral trauma through systemsDock-aided molecular docking experiments, and these compounds might be served as the active compounds in NZN against cerebral trauma. CONCLUSION: 1H-NMR based metabolomics and molecular docking provided the insights for the synergistic mechanisms and the potential active compounds of NZN in treating cerebral trauma. However, the bioactive compounds and their synergistic effect need to be further validated.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Metabolômica/métodos , Simulação de Acoplamento Molecular , Animais , Biomarcadores , Medicamentos de Ervas Chinesas/uso terapêutico , Espectroscopia de Ressonância Magnética , Masculino , Aprendizagem em Labirinto , Ratos , Ratos Sprague-Dawley , Software
5.
Nanoscale Res Lett ; 10: 90, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25852386

RESUMO

As material for flexible transparent electrodes for organic photoelectric devices, the silver nanowires (AgNWs) have been widely studied. In this work, we propose a hybrid flexible anode with photopolymer substrate, which is composed of spin-coating-processed AgNW meshes and of zinc oxide (ZnO) prepared by low-temperature (60°C) atomic layer deposition. ZnO effectively fills in the voids of the AgNW mesh electrode, which is thus able to contact to the device all over the active area, to allow for efficient charge extraction/injection. Furthermore, ZnO grown by low temperature mainly relies on hole conduction to make the anode play a better role. Hole-only devices are fabricated to certify the functionality of the low-temperature ZnO film. Finally, we confirm that the ZnO film grown at a low temperature bring a significant contribution to the performance of the modified AgNW anode.

6.
ACS Appl Mater Interfaces ; 6(6): 3799-804, 2014 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-24598603

RESUMO

In this study, ZrO2 films deposited by the atomic layer deposition method, as the encapsulation layer for organic electronics devices, were characterized. Both the effects of tetrakis (dimethylamido) zirconium(IV) growth temperature and oxidants, such as water (H2O) and ozone (O3), were investigated. The X-ray diffraction analysis shows the amorphous characteristic of the 80-nm-thick films grown at 80 °C, the crystallinity of the films was much lower than those grown at 140 and 200 °C. The scanning electron microscopy analyses showed that the surface morphology strongly depended on the crystallinity of the film. The water vapor transmission rate of the 80 nm thick ZrO2 films can be reduced from 3.74 × 10(-3) g/(m(2) day) (80 °C-H2O as the oxidant) to 6.09 × 10(-4) g/(m(2) day) (80 °C-O3 as the oxidant) under the controlled environment of 20 °C and a relative humidity of 60%. Moreover, the organic light-emitting diodes integrated with 80 °C-O3-derived ZrO2 films were undamaged, and their luminance decay time changed considerably. This was attributed to the better barrier property of the low-temperature ZrO2 film to the amorphous microscopic bulk and almost homogeneous microscopic surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA