RESUMO
The NLRP3 inflammasome is a multiprotein complex that is a component of the innate immune system, involved in the production of pro-inflammatory cytokines. Its abnormal activation is associated with many inflammatory diseases. In this study, we designed and synthesized a series of NLRP3 inflammasome inhibitors based on pyridazine scaffolds. Among them, P33 exhibited significant inhibitory effects against nigericin-induced IL-1ß release in THP-1 cells, BMDMs, and PBMCs, with IC50 values of 2.7, 15.3, and 2.9 nM, respectively. Mechanism studies indicated that P33 directly binds to NLRP3 protein (KD = 17.5 nM), inhibiting NLRP3 inflammasome activation and pyroptosis by suppressing ASC oligomerization during NLRP3 assembly. Additionally, P33 displayed excellent pharmacokinetic properties, with an oral bioavailability of 62%. In vivo efficacy studies revealed that P33 significantly ameliorated LPS-induced septic shock and MSU crystal-induced peritonitis in mice. These results indicate that P33 has great potential for further development as a candidate for treating NLRP3 inflammasome-mediated diseases.
Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Peritonite , Piridazinas , Choque Séptico , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Peritonite/tratamento farmacológico , Animais , Choque Séptico/tratamento farmacológico , Humanos , Inflamassomos/antagonistas & inibidores , Inflamassomos/metabolismo , Camundongos , Piridazinas/química , Piridazinas/farmacologia , Piridazinas/farmacocinética , Piridazinas/síntese química , Piridazinas/uso terapêutico , Administração Oral , Masculino , Camundongos Endogâmicos C57BL , Células THP-1 , Relação Estrutura-Atividade , Descoberta de Drogas , Interleucina-1beta/metabolismo , Interleucina-1beta/antagonistas & inibidores , Lipopolissacarídeos/farmacologiaRESUMO
Deep generative models have become crucial tools in de novo drug design. In current models for multiobjective optimization in molecular generation, the scaffold diversity is limited when multiple constraints are introduced. To enhance scaffold diversity, we herein propose a local scaffold diversity-contributed generator (LSDC), which can be utilized to generate diverse lead compounds capable of satisfying multiple constraints. Compared to the state-of-the-art methods, molecules generated by LSDC exhibit greater diversity when applied to the generation of inhibitors targeting the NOD-like receptor (NLR) family, pyrin domain-containing protein 3 (NLRP3). We present 12 molecules, some of which feature previously unreported scaffolds, and demonstrate their reasonable docking binding modes. Consequently, the modification of selected scaffolds and subsequent bioactivity evaluation lead to the discovery of two potent NLRP3 inhibitors, A22 and A14, with IC50 values of 38.1 nM and 44.43 nM, respectively. And the oral bioavailability of compound A14 is very high (F is 83.09% in mice). This work contributes to the discovery of novel NLRP3 inhibitors and provides a reference for integrating AI-based generation with wet experiments.