Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 146: 107330, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579615

RESUMO

The increased de novo serine biosynthesis confers many advantages for tumorigenesis and metastasis. Phosphoglycerate dehydrogenase (PHGDH), a rate-limiting enzyme in serine biogenesis, exhibits hyperactivity across multiple tumors and emerges as a promising target for cancer treatment. Through screening our in-house compound library, we identified compound Stattic as a potent PHGDH inhibitor (IC50 = 1.98 ± 0.66 µM). Subsequent exploration in structural activity relationships led to the discovery of compound B12 that demonstrated the increased enzymatic inhibitory activity (IC50 = 0.29 ± 0.02 µM). Furthermore, B12 exhibited robust inhibitory effects on the proliferation of MDA-MB-468, NCI-H1975, HT1080 and PC9 cells that overexpress PHGDH. Additionally, using a [U-13C6]-glucose tracing assay, B12 was found to reduce the production of glucose-derived serine in MDA-MB-468 cells. Finally, mass spectrometry-based peptide profiling, mutagenesis experiment and molecular docking study collectively suggested that B12 formed a covalent bond with Cys421 of PHGDH.


Assuntos
Inibidores Enzimáticos , Fosfoglicerato Desidrogenase , Simulação de Acoplamento Molecular , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Serina , Glucose , Linhagem Celular Tumoral
2.
Lipids Health Dis ; 23(1): 92, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561841

RESUMO

BACKGROUND: Lipoprotein lipase (LPL) plays a crucial role in triglyceride hydrolysis. Rare biallelic variants in the LPL gene leading to complete or near-complete loss of function cause autosomal recessive familial chylomicronemia syndrome. However, rare biallelic LPL variants resulting in significant but partial loss of function are rarely documented. This study reports a novel occurrence of such rare biallelic LPL variants in a Chinese patient with hypertriglyceridemia-induced acute pancreatitis (HTG-AP) during pregnancy and provides an in-depth functional characterization. METHODS: The complete coding sequences and adjacent intronic regions of the LPL, APOC2, APOA5, LMF1, and GPIHBP1 genes were analyzed by Sanger sequencing. The aim was to identify rare variants, including nonsense, frameshift, missense, small in-frame deletions or insertions, and canonical splice site mutations. The functional impact of identified LPL missense variants on protein expression, secretion, and activity was assessed in HEK293T cells through single and co-transfection experiments, with and without heparin treatment. RESULTS: Two rare LPL missense variants were identified in the patient: the previously reported c.809G > A (p.Arg270His) and a novel c.331G > C (p.Val111Leu). Genetic testing confirmed these variants were inherited biallelically. Functional analysis showed that the p.Arg270His variant resulted in a near-complete loss of LPL function due to effects on protein synthesis/stability, secretion, and enzymatic activity. In contrast, the p.Val111Leu variant retained approximately 32.3% of wild-type activity, without impacting protein synthesis, stability, or secretion. Co-transfection experiments indicated a combined activity level of 20.7%, suggesting no dominant negative interaction between the variants. The patient's post-heparin plasma LPL activity was about 35% of control levels. CONCLUSIONS: This study presents a novel case of partial but significant loss-of-function biallelic LPL variants in a patient with HTG-AP during pregnancy. Our findings enhance the understanding of the nuanced relationship between LPL genotypes and clinical phenotypes, highlighting the importance of residual LPL function in disease manifestation and severity. Additionally, our study underscores the challenges in classifying partial loss-of-function variants in classical Mendelian disease genes according to the American College of Medical Genetics and Genomics (ACMG)'s variant classification guidelines.


Assuntos
Hiperlipidemias , Hipertrigliceridemia , Pancreatite , Humanos , Lipase Lipoproteica/genética , Doença Aguda , Células HEK293 , Pancreatite/genética , Heparina
3.
J Sci Food Agric ; 104(6): 3294-3305, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38087418

RESUMO

BACKGROUND: Mulberry leaves (MLs) are widely used in food because of their nutritional and functional characteristics. However, plant cell walls and natural bitterness influence nutrient release and the flavor properties of MLs. Liquid-state fermentation using Monascus purpureus (LFMP) is a common processing method used to improve food properties. The present study used headspace solid-phase micro extraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) and non-targeted metabolomics to examine changes in volatile and non-volatile metabolites in MLs. The transformation mechanism of LFMP was investigated by microscopic observation and dynamic analysis of enzyme activity, and changes in the biological activity of MLs were analyzed. RESULTS: LFMP significantly increased total phenolics, total flavonoids, free amino acids and soluble sugars in MLs, at the same time as decreasing phytic acid levels. In total, 92 volatile organic compounds (VOCs) were identified and quantified. VOCs such as (2R,3R)-(-)-2,3-butanediol, terpineol and eugenol showed some improvement in the flavour characteristics of MLs. By using non-targeted metabolomics, 124 unique metabolites in total were examined. LFMP altered the metabolic profile of MLs, mainly in plant secondary metabolism, lipid metabolism and amino acid metabolism. Microscopic observation and dynamic analysis of enzyme activity indicated that LFMP promoted cell wall degradation and biotransformation of MLs. In addition, LFMP significantly increased the angiotensin I-converting enzyme and α-glucosidase inhibitory activity of MLs. CONCLUSION: LFMP altered the flavour characteristics, metabolite profile and biological activity of MLs. These findings will provide ideas for the processing of MLs into functional foods. In addition, they also provide useful information for biochemical studies of fermented MLs. © 2023 Society of Chemical Industry.


Assuntos
Monascus , Morus , Compostos Orgânicos Voláteis , Microextração em Fase Sólida/métodos , Morus/química , Monascus/metabolismo , Fermentação , Metabolômica/métodos , Compostos Orgânicos Voláteis/química , Metaboloma
4.
Pharmacol Res ; 197: 106955, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37820855

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and lethal malignancies lacking effective therapies. KRAS mutations that occur in over 90% of PDAC are major oncogenic drivers of PDAC. The MAPK signaling pathway plays a central role in KRAS-driven oncogenic signaling. However, pharmacological inhibitors of the MAPK pathway are poorly responded in KRAS-mutant PDAC, raising a compelling need to understand the mechanism behind and to seek new therapeutic solutions. Herein, we perform a screen utilizing a library composed of 800 naturally-derived bioactive compounds to identify natural products that are able to sensitize KRAS-mutant PDAC cells to the MAPK inhibition. We discover that tetrandrine, a natural bisbenzylisoquinoline alkaloid, shows a synergistic effect with MAPK inhibitors in PDAC cells and xenograft models. Mechanistically, pharmacological inhibition of the MAPK pathway exhibits a double-edged impact on the TRAIL-death receptor axis, transcriptionally upregulating TRAIL yet downregulating its agonistic receptors DR4 and DR5, which may explain the limited therapeutic outcomes of MAPK inhibitors in KRAS-mutant PDAC. Of great interest, tetrandrine stabilizes DR4/DR5 protein via impairing ubiquitination-mediated protein degradation, thereby allowing a synergy with MAPK inhibition in inducing apoptosis in KRAS-mutant PDAC. Our findings identify a new combinatorial approach for treating KRAS-mutant PDAC and highlight the role of TRAIL-DR4/DR5 axis in dictating the therapeutic outcome in KRAS-mutant PDAC.


Assuntos
Benzilisoquinolinas , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Benzilisoquinolinas/farmacologia , Benzilisoquinolinas/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Receptores de Morte Celular , Neoplasias Pancreáticas
5.
Front Bioeng Biotechnol ; 11: 1170676, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37425356

RESUMO

As a by-product of the sericulture industry, the utilization rate of silkworm pupa resources is currently not high. Proteins are converted into bioactive peptides through enzymatic hydrolysis. Not only can it solve the utilization problem, but it also creates more valuable nutritional additives. Silkworm pupa protein (SPP) was pretreated with tri-frequency ultrasonic (22/28/40 kHz). Effects of ultrasonic pretreatment on enzymolysis kinetics, enzymolysis thermodynamics, hydrolysate structure as well as hydrolysate antioxidant of SPP were investigated. Ultrasonic pretreatment significantly increased the hydrolysis efficiency, showing a 6.369% decrease in k m and a 16.746% increase in k A after ultrasonic action (p < 0.05). The SPP enzymolysis reaction followed a second-order rate kinetics model. Evaluation of enzymolysis thermodynamics revealed that Ultrasonic pretreatment markedly enhanced the SPP enzymolysis, leading to a 21.943% decrease in E a. Besides, Ultrasonic pretreatment significantly increased SPP hydrolysate's surface hydrophobicity, thermal stability, crystallinity, and antioxidant activities (DPPH radical scavenging activity, Fe2+ chelation ability, and reducing power). This study indicated that tri-frequency ultrasonic pretreatment could be an efficient approach to enhancing the enzymolysis and improving the functional properties of SPP. Therefore, tri-frequency ultrasound technology can be applied industrially to enhance enzyme reaction process.

6.
Cell Res ; 32(7): 638-658, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35459936

RESUMO

Mutant isocitrate dehydrogenase 1 (mIDH1) drives tumorigenesis via producing oncometabolite R-2-hydroxyglutarate (R-2-HG) across various tumor types. However, mIDH1 inhibitors appear only effective in hematological tumors. The therapeutic benefit in solid tumors remains elusive, likely due to the complex tumor microenvironment. In this study, we discover that R-2-HG produced by IDH1-mutant tumor cells is preferentially imported into vascular endothelial cells and remodels mitochondrial respiration to promote tumor angiogenesis, conferring a therapeutic vulnerability in IDH1-mutant solid tumors. Mechanistically, SLC1A1, a Na+-dependent glutamate transporter that is preferentially expressed in endothelial cells, facilitates the influx of R-2-HG from the tumor microenvironment into the endothelial cells as well as the intracellular trafficking of R-2-HG from cytoplasm to mitochondria. R-2-HG hijacks SLC1A1 to promote mitochondrial Na+/Ca2+ exchange, which activates the mitochondrial respiratory chain and fuels vascular endothelial cell migration in tumor angiogenesis. SLC1A1 deficiency in mice abolishes mIDH1-promoted tumor angiogenesis as well as the therapeutic benefit of mIDH1 inhibitor in solid tumors. Moreover, we report that HH2301, a newly discovered mIDH1 inhibitor, shows promising efficacy in treating IDH1-mutant cholangiocarcinoma in preclinical models. Together, we identify a new role of SLC1A1 as a gatekeeper of R-2-HG-mediated crosstalk between IDH1-mutant tumor cells and vascular endothelial cells, and demonstrate the therapeutic potential of mIDH1 inhibitors in treating IDH1-mutant solid tumors via disrupting R-2-HG-promoted tumor angiogenesis.


Assuntos
Transportador 3 de Aminoácido Excitatório , Isocitrato Desidrogenase , Neoplasias , Animais , Células Endoteliais/metabolismo , Transportador 3 de Aminoácido Excitatório/metabolismo , Glutaratos , Isocitrato Desidrogenase/genética , Camundongos , Mitocôndrias/metabolismo , Mutação , Microambiente Tumoral
7.
Zhongguo Zhong Yao Za Zhi ; 46(19): 4993-5004, 2021 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-34738394

RESUMO

The antidepressant mechanism of Sini Powder was investigated by metabonomics based on UHPLC-Q-TOF-MS, and the roles of processing and compatibility in the antidepression of Sini Powder were discussed in the present study. The chronic unpredictable mild stress(CUMS) model of depression was induced in the model group, the Bupleuri Radix group, the Paeoniae Radix Alba group, the herb-pair group(Bupleuri Radix-Paeoniae Radix Alba), the Sini Powder group, and the vinegar-processed Sini Powder group(Bupleuri Radix and Paeoniae Radix Alba were vinegar-processed). After the establishment of the model, the rats in each group were continuously administered with corresponding drugs(ig) at a dose of 9.6 g·kg~(-1) for eight days [the rats in the model group and the normal group(without model induction) received the same volume of normal saline at the same time]. Following the last administration, the differential metabolites were identified to analyze metabolic pathways based on the rat plasma samples collected from each group. A total of sixteen potential biomarkers were identified. The metabolites with significant changes were involved in many biological metabolic pathways, such as amino acid metabolism, pentose phosphate pathway, glycerol phospholipid metabolism, sphingolipid metabolism, and purine metabolism. After drug intervention, some biomarkers returned to normal levels. Further comparisons of processing and compatibility revealed that the vinegar-processed Sini Powder group had the most total metabolic pathways where differential metabolites were returned to normal. Compared with the individual herbs, the herb-pair significantly improved the recovery of differential metabolites in the pentose phosphate and purine metabolic pathways. Compared with the Sini Powder, the vinegar-processed Sini Powder facilitated the recovery of differential metabolites in the arginine biosynthesis, and pyrimidine and pentose phosphate metabolic pathways. As indicated by the results, Sini Powder may interfere with depression by regulating lipid and nucleotide metabolisms. The processing and compatibility of Chinese herbal medicines can potentiate the intervention on depression by regulating nucleotide, energy, and amino acid metabolisms to a certain extent.


Assuntos
Medicamentos de Ervas Chinesas , Paeonia , Animais , Antidepressivos , Metabolômica , Pós , Ratos
8.
J Vac Sci Technol A ; 36(1): 01B101, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28867872

RESUMO

Silver deposition precursor molecule trimethylphosphine(hexafluoroacetylacetonato)silver(I) [(hfac)AgP(CH3)3] was used to deposit silver onto water-modified (hydroxyl-terminated) solid substrates. A silicon wafer was used as a model flat surface, and water-predosed ZnO nanopowder was investigated to expand the findings to a common substrate material for possible practical applications. Following the deposition, oxygen plasma was used to remove the remaining organic ligands on a surface and to investigate its effect on the morphology of chemically deposited silver nanoparticles and films. A combination of microscopic and spectroscopic techniques including electron microscopy and x-ray photoelectron spectroscopy was used to confirm the change in the morphology of the deposited material consistent with Ostwald ripening as a result of plasma treatment. Particle agglomeration was observed on the surfaces, and the deposited metallic silver was oxidized to Ag2O following plasma treatment. The fluorine-containing ligands were completely removed. This result suggests that chemical vapor deposition can be used to deposit silver in a very controlled manner onto a variety of substrates using different topography methods and that the post-treatment with oxygen plasma is effective in preparing materials deposited for potential practical applications.

9.
J Phys Chem C Nanomater Interfaces ; 121(13): 7240-7247, 2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28652890

RESUMO

Trimethylphosphine(hexafluoroacetylacetonato)silver(I) was used as a precursor to deposit silver onto silicon surfaces. The deposition was performed on silicon-based substrates including silica, H-terminated Si(100), and OH-terminated (oxidized) Si(100). The deposition processes at room temperature and elevated temperature (350 °C) were compared. The successful deposition resulted in nanostructures or nanostructured films as confirmed by atomic force microscopy (AFM) and scanning electron microscopy (SEM) with metallic silver being the majority deposited species as confirmed by X-ray photoelectron spectroscopy (XPS). The reactivity of the precursor depends drastically not only on the temperature of the process but also on the type of substrate. Density functional theory (DFT) was used to explain these differences and to propose the mechanisms for the initial deposition steps.

10.
J Chem Phys ; 146(5): 052814, 2017 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-28178799

RESUMO

The surface reactivity of two copper-containing precursors, (Cu(hfac)2 and Cu(hfac)VTMS, where hfac is hexafluoroacetyloacetonate and VTMS is vinyltrimethylsilane), was investigated by dosing the precursors onto a surface of highly ordered pyrolytic graphite (HOPG) at room temperature. The behavior of these precursors on a pristine HOPG was compared to that on a surface activated by ion sputtering and subsequent oxidation to induce controlled surface defects. X-ray photoelectron spectroscopy and energy dispersive X-ray spectroscopy were used to confirm copper deposition and its surface distribution, and to compare with the results of scanning electron microscopy and atomic force microscopy investigations. As expected, surface defects promote copper deposition; however, the specific structures deposited depend on the deposition precursor. Density functional theory was used to mimic the reactions of each precursor molecule on this surface and to determine the origins of this different reactivity.

11.
Sens Actuators B Chem ; 235: 213-221, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27812240

RESUMO

The poisoning of H2S sensing material based on the mixture of acid-treated carbon nanotubes, CuO and SnO2 was investigated by exposing the material to high doses of H2S (1% in volume) and following the changes spectroscopically. The presence of metal sulfides (CuS and SnS2), sulfates and thiols was confirmed on the surface of this material as the result of H2S poisoning. Further study revealed that leaving this material in air for extended period of time led to reoxidation of metal sulfides back to metal oxides. The formation of thiols and sulfates directly on carbon nanotubes is not reversible under these conditions; however, the extent of the overall surface reaction in this case is substantially lower than that for the composite material.

12.
Langmuir ; 32(28): 7029-37, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27351220

RESUMO

Supported nanoparticulate materials have a variety of uses, from energy storage to catalysis. In preparing such materials, precision control can often be achieved by applying chemical deposition methods. However, ligand removal following the initial deposition presents a substantial challenge because of potential surface contamination. Traditional approaches normally include multistep processing and require a substantial thermal budget. Using transmetalation chemistry, it is possible to circumvent both disadvantages and prepare chemically reactive copper nanoparticles supported on a commercially available ZnO powder material by metalorganic vapor copper deposition followed by very mild annealing to 350 K. The self-limiting copper deposition reaction is used to demonstrate the utility of this approach for hexafluoroacetylacetonate-copper-vinyltrimethylsilane, Cu(hfac)VTMS, reacting with ZnO. The low-temperature transmetalation is confirmed by a combination of spectroscopic studies. Model density functional theory calculations are consistent with a thermodynamic driving force for the process.

13.
J Phys Chem C Nanomater Interfaces ; 119(48): 27018-27027, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-27482303

RESUMO

Surface-limited deposition reactions leading to the formation of copper nanoparticles on H-terminated Si(111) surface can serve as a model for understanding the role of structure of the deposition precursor molecules in determining the oxidation state of the metal deposited. This study compares three different precursor molecules: Cu(acac)2 (Cu(II) acetylacetonate), Cu(hfac)2, and Cu(hfac)VTMS (Cu(I)-(hexafluoroacetylacetonato)-vinyltrimethylsilane) as copper deposition sources in a process with a controlled oxidation state of copper. X-ray photoelectron spectroscopy suggests that single-electron reduction governs the deposition of Cu(I) from the first two precursor molecules and that the last of the precursors studied yields predominantly metallic copper. Time-of-fight secondary ion mass spectrometry (ToF-SIMS) and infrared spectroscopy are utilized to interrogate surface species produced. Atomic force microscopy is used to quantify the deposition process and to follow the size distribution of the deposited copper containing nanoparticles. A plausible explanation supported by density functional theory calculations is offered on the basis of the difference in the reaction pathways for Cu(I) and Cu(II) precursors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA