Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Anim Sci Biotechnol ; 15(1): 55, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528636

RESUMO

BACKGROUND: Low crude protein (CP) formulations with supplemental amino acids (AA) are used to enhance intestinal health, reduce costs, minimize environmental impact, and maintain growth performance of pigs. However, extensive reduction of dietary CP can compromise growth performance due to limited synthesis of non-essential AA and limited availability of bioactive compounds from protein supplements even when AA requirements are met. Moreover, implementing a low CP formulation can increase the net energy (NE) content in feeds causing excessive fat deposition. Additional supplementation of functional AA, coupled with low CP formulation could further enhance intestinal health and glucose metabolism, improving nitrogen utilization, and growth performance. Three experiments were conducted to evaluate the effects of low CP formulations with supplemental AA on the intestinal health and growth performance of growing-finishing pigs. METHODS: In Exp. 1, 90 pigs (19.7 ± 1.1 kg, 45 barrows and 45 gilts) were assigned to 3 treatments: CON (18.0% CP, supplementing Lys, Met, and Thr), LCP (16.0% CP, supplementing Lys, Met, Thr, Trp, and Val), and LCPT (16.1% CP, LCP + 0.05% SID Trp). In Exp. 2, 72 pigs (34.2 ± 4.2 kg BW) were assigned to 3 treatments: CON (17.7% CP, meeting the requirements of Lys, Met, Thr, and Trp); LCP (15.0% CP, meeting Lys, Thr, Trp, Met, Val, Ile, and Phe); and VLCP (12.8% CP, meeting Lys, Thr, Trp, Met, Val, Ile, Phe, His, and Leu). In Exp. 3, 72 pigs (54.1 ± 5.9 kg BW) were assigned to 3 treatments and fed experimental diets for 3 phases (grower 2, finishing 1, and finishing 2). Treatments were CON (18.0%, 13.8%, 12.7% CP for 3 phases; meeting Lys, Met, Thr, and Trp); LCP (13.5%, 11.4%, 10.4% CP for 3 phases; meeting Lys, Thr, Trp, Met, Val, Ile, and Phe); and LCPG (14.1%, 12.8%, 11.1% CP for 3 phases; LCP + Glu to match SID Glu with CON). All diets had 2.6 Mcal/kg NE. RESULTS: In Exp. 1, overall, the growth performance did not differ among treatments. The LCPT increased (P < 0.05) Claudin-1 expression in the duodenum and jejunum. The LCP and LCPT increased (P < 0.05) CAT-1, 4F2hc, and B0AT expressions in the jejunum. In Exp. 2, overall, the VLCP reduced (P < 0.05) G:F and BUN. The LCP and VLCP increased (P < 0.05) the backfat thickness (BFT). In Exp. 3, overall, growth performance and BFT did not differ among treatments. The LCPG reduced (P < 0.05) BUN, whereas increased the insulin in plasma. The LCP and LCPG reduced (P < 0.05) the abundance of Streptococcaceae, whereas the LCP reduced (P < 0.05) Erysipelotrichaceae, and the alpha diversity. CONCLUSIONS: When implementing low CP formulation, CP can be reduced by supplementation of Lys, Thr, Met, Trp, Val, and Ile without affecting the growth performance of growing-finishing pigs when NE is adjusted to avoid increased fat deposition. Supplementation of Trp above the requirement or supplementation of Glu in low CP formulation seems to benefit intestinal health as well as improved nitrogen utilization and glucose metabolism.

2.
Anim Biosci ; 37(8): 1463-1473, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38419538

RESUMO

OBJECTIVE: Three experiments were conducted to evaluate the effects of Saccharomyces yeast postbiotics (SYP) in feeds for sows on the growth of offspring (Exp. 1), for nursery pigs on their growth (Exp. 2), and for nursery and finishing pigs on their growth (Exp. 3). METHODS: Exp. 1 had 80 sows at breeding assigned to 4 groups with SYP at 0, 0.050, 0.175, and 0.500 g/kg. Offspring were fed a common diet for 126 d. Exp. 2 had 144 barrows at 8 kg body weight (BW) allotted to CON (no SYP); YPC (SYP at 0.175 g/kg; d 0 to 42); and YPD (SYP at 1.25, 0.75, and 0 g/kg; d 0 to 7, d 8 to 21, and d 22 to 42, respectively) with 8 pens/treatment (6 pigs/pen). Exp. 3 had 96 barrows at 8 kg BW allotted to CON (no SYP); YPN (SYP at 0.175 g/kg; d 0 to 42); YPF (SYP at 0.100 g/kg; d 43 to 119); and YPA (SYP at 0.175 and 0.100 g/kg; d 0 to 42 and d 43 to 119, respectively) with 8 pens/ treatment (3 pigs/pen). RESULTS: In Exp. 1, increasing SYP increased (p<0.05, quadratic) the sow body score (maximum at 0.30% SYP), reduced (p<0.05, quadratic) the days-wean-to-estrus (minimum at 0.27% SYP), and increased (p<0.05) offspring BW at weaning and their average daily gain (ADG) and feed efficiency (G:F) at d 126. In Exp. 2, ADG, average daily feed intake (ADFI), and G:F of YPC were the greatest (p<0.05). The ADG and ADFI of YPD were greater (p<0.05) than CON. Fecal score of YPC and YPD was smaller (p<0.05) than CON. In Exp. 3, YPA had the greatest (p<0.05) ADG and YPN and YPF had greater (p<0.05) ADG than CON. CONCLUSION: SYP enhanced sow performance, offspring growth, growth of nursery and growing pigs with the greater efficacy at 0.27 to 0.32 g/kg feed.

3.
Anim Biosci ; 37(4): 786-793, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38419541

RESUMO

Latin America is a culturally, geographically, politically, and economically diverse region. Agriculture in Latin America is marked by a remarkable diversity of production systems, reflecting various agroecological zones, farm sizes, and technological levels. In the last decade, the swine industry increased by 30.6%, emerging as a great contributor to food security and economic development in Latin America. Brazil and Mexico dominate the pig production landscape, together accounting for 70% of sow inventory in the region. The swine industry in Latin America is predominantly comprised of small and medium-sized farms, however, in the past 30 years, the number of pig producers in Brazil dropped by 78%, whereas pork production increased by 326%. Similar to the global pork industry, the growing demand for pork, driven by population growth and changing dietary habits, presents an opportunity for the industry with an expected growth of 16% over the next decade. The export prospects are promising, however subject to potential disruptions from global market conditions and shifts in trade policies. Among the challenges faced by the swine industry, disease outbreaks, particularly African Swine Fever (ASF), present significant threats, necessitating enhanced biosecurity and surveillance systems. In 2023, ASF was reported to the Dominican Republic and Haiti, Porcine Reproductive and Respiratory Syndrome (PRRS) in Mexico, Costa Rica, the Dominican Republic, Colombia, and Venezuela, and Porcine Epidemic Diarrhea (PED) in Mexico, Peru, the Dominican Republic, Colombia, and Ecuador. Additionally, feed costs, supply chain disruptions, and energy expenses have affected mainly the smaller and less efficient producers. The swine industry is also transitioning towards more sustainable and environmentally friendly practices, including efficient feed usage, and precision farming. Ensuring long-term success in the swine industry in Latin America requires a holistic approach that prioritizes sustainability, animal welfare, and consumer preferences, ultimately positioning the industry to thrive in the evolving global market.

4.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38422238

RESUMO

Two experiments were conducted using 120 pigs to test the hypothesis that supplementation of ß-mannanase could reduce digesta viscosity, enhance nutrient digestion, and improve intestinal health and growth of nursery pigs. In experiment 1, 48 crossbred barrows were randomly allotted to four treatments with increasing levels of ß-mannanase at 0, 200, 400, and 600 U/kg in feeds. All pigs were euthanized on day 12 to collect jejunal digesta to measure digesta viscosity and ileal digesta to measure apparent ileal digestibility (AID) of dry matter (DM), gross energy (GE), neutral detergent fiber (NDF), and acid detergent fiber (ADF). In experiment 2, 72 nursery pigs were randomly allotted to three treatments with increasing levels of ß-mannanase at 0, 400, and 600 U/kg in feeds. Plasma collected on day 9 was used to measure tumor necrosis factor-α (TNF-α), immunoglobulin G (IgG), malondialdehyde (MDA), and protein carbonyl (PC). All pigs were euthanized on day 10 to collect duodenal and jejunal tissues to evaluate the production of TNF-α, IL-6, and MDA, morphology, crypt cell proliferation, and expression of tight junction proteins in the jejunum. Data were analyzed using the MIXED procedure for polynomial contrasts and the NLMIXED procedure for broken-line analysis of SAS. In experiment 1, ß-mannanase supplementation tended to have quadratic effects on digesta viscosity (P = 0.085) and AID of GE (P = 0.093) in the pigs. In experiment 2, jejunal digesta viscosity of the pigs was reduced (P < 0.05) when ß-mannanase was supplemented at 360 U/kg of feed. ß-Mannanase supplementation linearly reduced (P < 0.05) TNF-α, IgG, MDA, and PC in the duodenum, and TNF-α, IgG, and MDA in the jejunum of the pigs. ß-Mannanase supplementation linearly increased (P < 0.05) villus height to crypt depth ratio and crypt cell proliferation in the jejunum. ß-Mannanase supplementation tended to linearly improve (P = 0.083) expression of zonula occludens-1 in the jejunum. In conclusion, supplementation of ß-mannanase at 360 U/kg reduced the digesta viscosity and up to 600 U/kg positively affected intestinal health and growth of pigs by reducing inflammation and oxidative stress whilst enhancing structure and barrier function in the jejunum.


Nursery pigs face challenges in digesting complex carbohydrates in their feeds, which can negatively affect their growth and intestinal health. In particular, ß-mannans can increase digesta viscosity and hinder nutrient digestion of nursery pigs. ß-Mannanase, an enzyme that breaks down ß-mannans, has been used in nursery feeds to alleviate negative impacts on nutrient utilization and intestinal health of nursery pigs. This study investigated the effects of increasing supplementation levels of ß-mannanase on intestinal health, nutrient utilization, and growth of nursery pigs. The results showed that supplementation of ß-mannanase at 360 U/kg in the feed reduced the digesta viscosity in the jejunum and up to 600 U/kg positively had beneficial effects on the intestinal health and growth of nursery pigs by reducing inflammation and oxidative stress through improving structure and barrier function in the jejunum.


Assuntos
Dieta , beta-Manosidase , Animais , Suínos , Dieta/veterinária , beta-Manosidase/farmacologia , Fator de Necrose Tumoral alfa , Detergentes/farmacologia , Digestão , Suplementos Nutricionais/análise , Imunoglobulina G , Ração Animal/análise
5.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38280204

RESUMO

This study aimed to investigate the effects of xylanase on growth performance and intestinal health of nursery pigs fed diets with reduced metabolizable energy (ME). One hundred ninety-two pigs at 8.7 kg ±â€…0.7 body weight (BW) after 7 d of weaning were allotted in a randomized complete block design with initial BW and sex as blocks. Eight dietary treatments consisted of 5 ME levels (3,400, 3,375, 3,350, 3,325, and 3,300 kcal ME/kg) below the NRC (2012) requirement and 4 levels of xylanase (0, 1,200, 2,400, and 3,600 XU/kg) to a diet with 3,300 kcal ME/kg. All pigs received their respective treatments for 35 d in 2 phases, pre-starter (14 d) and starter (21 d). On day 35, eight pigs in 3,400 kcal/kg (CON), 3,300 kcal/kg (LE), and 3,300 kcal/kg + 3,600 XU xylanase/kg (LEX) were euthanized to collect jejunal tissues and digesta for the evaluation of mucosa-associated microbiota, intestinal immune response, oxidative stress status, intestinal morphology, crypt cell proliferation, and digesta viscosity as well as ileal digesta to measure apparent ileal digestibility. Data were analyzed using the MIXED procedure on SAS 9.4. The LE increased (P < 0.05) jejunal digesta viscosity, tended to have decreased (P = 0.053) relative abundance of Prevotella, and tended to increase (P = 0.055) Lactobacillus. The LE also increased (P < 0.05) the concentration of protein carbonyl whereas malondialdehyde, villus height (VH), villus height to crypt depth ratio (VH:CD), apparent ileal digestibility (AID) of nutrients, and finally average daily feed intake were decreased (P < 0.05). The LE did not affect average daily gain (ADG). The LEX decreased (P < 0.05) digesta viscosity, increased (P < 0.05) the relative abundance of Prevotella, decreased (P < 0.05) Helicobacter, decreased (P < 0.05) the concentration of protein carbonyl, tended to increase (P = 0.065) VH, and decreased (P < 0.05) VH:CD and crypt cell proliferation. Moreover, LEX increased (P < 0.05) the AID of dry matter and gross energy and tended to increase (P = 0.099; P = 0.076) AID of crude protein, and ether extract. The LEX did not affect ADG but did tend to decrease (P = 0.070) fecal score during the starter phase. Overall, reducing ME negatively affected intestinal health parameters and nutrient digestibility without affecting growth. Supplementation of xylanase mitigated some of the negative effects observed by ME reduction on intestinal health and digestibility of nutrients without affecting growth.


Dietary inclusion of fats in the feeds of nursery pigs allows nutritionists to increase the energy density of the feed. Some researchers believe the value of adding fat in nursery feeds goes beyond meeting the energy specification of the feed but rather as a supply of fatty acids that can regulate various bodily processes. Volatility in feedstuff prices has resulted in increased inclusion of coproducts rich in nonstarch polysaccharides (NSP) and a decrease in dietary fat in nursery pig diets in an effort to boost economic sustainability with minimal compromise of growth. Common feedstuffs of plant origin possess an inherent amount of NSP that can elicit negative effects on the digesta viscosity, intestinal microbiota, and digestibility of nutrients. Supplemental enzymes such as xylanase target specific NSP components within the feed to alleviate some of these negative effects and may release otherwise indigestible nutrients for absorption. The aim of this study was to investigate the impact of reducing metabolizable energy (ME) of the feed up to 100 kcal ME/kg on growth performance, intestinal health, immune status, and the composition of the mucosa-associated microbiota as well as the ability of xylanase to mediate the negative effects imposed by a reduction in supplemental fat to lower ME.


Assuntos
Suplementos Nutricionais , Digestão , Animais , Suínos , Endo-1,4-beta-Xilanases , Dieta/veterinária , Intestinos/fisiologia , Peso Corporal , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal
6.
Anim Biosci ; 37(4): 719-729, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37946421

RESUMO

Global pig production has increased by 140% since the 1960s. The increase in global population, coupled with improving socioeconomic conditions of many countries has led to an increased consumption of meat globally, including pork. To keep up with demand and capitalize on economic opportunities, the countries of China, the United States (US), and the European Union (EU) have become the top 3 pork producers globally. China is of particular interest, as it is the both the largest country in pork production and pig numbers, as well as being the largest importer of pork from other countries. Globally, the efficiency of pork production has improved, in relation to the integration of pig production and the dramatic increase in research efforts in pig nutrition and production. Through integration, large producers can consolidate resources and maximize profits and efficiency. The increased research interest and efforts in pig production have given scientists and producers the opportunity to collaborate to adapt to challenges and identify possible solutions to issues brought on by a volatile global market. Intestinal health (23%), general nutrition and growth (23%), and amino acid nutrition (15%) were the top 3 areas (61%) leading research trends in pig nutrition and production. Major dietary interventions with feed additives evaluated include functional amino acids, feed enzymes, pre-/pro-/post-biotics, and phytobiotics with a common goal to improve the growth efficiency by enhancing nutrient utilization and intestinal health. With increasing global issues with environment, pig producers and the supporting scientists should continue their efforts to improve the production efficiency and to reduce the environmental footprint from pig production.

7.
Animals (Basel) ; 13(17)2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37685055

RESUMO

This review focused on the impact of F18+E. coli on pig production and explored nutritional interventions to mitigate its deleterious effects. F18+E. coli is a primary cause of PWD in nursery pigs, resulting in substantial economic losses through diminished feed efficiency, morbidity, and mortality. In summary, the F18+E. coli induces intestinal inflammation with elevated IL6 (60%), IL8 (43%), and TNF-α (28%), disrupting the microbiota and resulting in 14% villus height reduction. Besides the mortality, the compromised intestinal health results in a 20% G:F decrease and a 10% ADFI reduction, ultimately culminating in a 28% ADG decrease. Among nutritional interventions to counter F18+E. coli impacts, zinc glycinate lowered TNF-α (26%) and protein carbonyl (45%) in jejunal mucosa, resulting in a 39% ADG increase. Lactic acid bacteria reduced TNF-α (36%), increasing 51% ADG, whereas Bacillus spp. reduced IL6 (27%), increasing BW (12%). Lactobacillus postbiotic increased BW (14%) and the diversity of beneficial bacteria. Phytobiotics reduced TNF-α (23%) and IL6 (21%), enhancing feed efficiency (37%). Additional interventions, including low crude protein formulation, antibacterial minerals, prebiotics, and organic acids, can be effectively used to combat F18+E. coli infection. These findings collectively underscore a range of effective strategies for managing the challenges posed by F18+E. coli in pig production.

8.
Anim Nutr ; 14: 235-248, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37600837

RESUMO

This study investigated the effects of using soy protein concentrate (SPC) to replace animal protein supplements on mucosa-associated microbiota, intestinal health, and growth performance of nursery pigs. Fifty-six newly weaned pigs (BW = 6.4 ± 0.6 kg) were allotted to 5 treatments in a randomized complete block design. Pigs were fed for 35 d in 3 phases (P; 1, 2, 3) for 10, 12, 13 d, respectively. Dietary treatments were: (1) basal diet with fish meal (P1: 4%, P2: 2%, and P3: 1%), poultry meal (P1: 10%, P2: 8%, and P3: 4%), and blood plasma (P1: 4%, P2: 2%, and P3: 1%), where SPC replacing none (NC); (2) basal diet with SPC replacing fish meal (RFM); (3) basal diet with SPC replacing poultry meal (RPM); (4) basal diet with SPC replacing blood plasma (RBP); and (5) basal diet with SPC replacing all animal protein supplements (PC). Growth performance was recorded for each phase. Pigs were euthanized on d 35 to collect jejunal mucosa and tissue to evaluate intestinal health and microbiota, and ileal digesta to measure apparent ileal digestibility (AID) of nutrients. Data were analyzed using the MIXED procedure of SAS. Overall, RFM, RPM, and RBP did not affect growth performance, whereas PC decreased (P < 0.05) ADG and ADFI. The RPM increased (P < 0.05) Prevotella stercorea and decreased (P < 0.05) Helicobacter rappini. The PC decreased (P < 0.05) H. rappini, whilst increasing (P < 0.05) Prevotella copri, Propionibacterium acnes, and Pelomonas aquatica. The RFM tended to increase (P = 0.096) immunoglobulin A in the jejunum. The PC tended to decrease (P = 0.078) jejunal crypt cell proliferation. There were no differences in the villus height, AID of nutrients, intestinal inflammation, and intestinal oxidative stress among treatments. In conclusion, SPC can replace fish meal, poultry meal, or blood plasma individually without affecting growth performance and intestinal health, and AID of nutrients of nursery pigs. Particularly SPC replacing poultry meal benefitted intestinal health by reducing H. rappini and increasing P. stercorea. However, SPC replacing all three animal protein supplements reduced growth of nursery pigs mainly by reducing feed intake.

9.
J Anim Sci Biotechnol ; 14(1): 89, 2023 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-37393326

RESUMO

BACKGROUND: Soy protein supplements, with high crude protein and less antinutritional factors, are produced from soybean meal by different processes. This study evaluated the comparative effects of various soy protein supplements replacing animal protein supplements in feeds on the intestinal immune status, intestinal oxidative stress, mucosa-associated microbiota, and growth performance of nursery pigs. METHODS: Sixty nursery pigs (6.6 ± 0.5 kg BW) were allotted to five treatments in a randomized complete block design with initial BW and sex as blocks. Pigs were fed for 39 d in 3 phases (P1, P2, and P3). Treatments were: Control (CON), basal diet with fish meal 4%, 2%, and 1%, poultry meal 10%, 8%, and 4%, and blood plasma 4%, 2%, and 1% for P1, P2, and P3, respectively; basal diet with soy protein concentrate (SPC), enzyme-treated soybean meal (ESB), fermented soybean meal with Lactobacillus (FSBL), and fermented soybean meal with Bacillus (FSBB), replacing 1/3, 2/3, and 3/3 of animal protein supplements for P1, P2, and P3, respectively. Data were analyzed using the MIXED procedure in SAS 9.4. RESULTS: The SPC did not affect the BW, ADG, and G:F, whereas it tended to reduce (P = 0.094) the ADFI and tended to increase (P = 0.091) crypt cell proliferation. The ESM did not affect BW, ADG, ADFI, and G:F, whereas tended to decrease (P = 0.098) protein carbonyl in jejunal mucosa. The FSBL decreased (P < 0.05) BW and ADG, increased (P < 0.05) TNF-α, and Klebsiella and tended to increase MDA (P = 0.065) and IgG (P = 0.089) in jejunal mucosa. The FSBB tended to increase (P = 0.073) TNF-α, increased (P < 0.05) Clostridium and decreased (P < 0.05) Achromobacter and alpha diversity of microbiota in jejunal mucosa. CONCLUSIONS: Soy protein concentrate, enzyme-treated soybean meal, and fermented soybean meal with Bacillus could reduce the use of animal protein supplements up to 33% until 7 kg body weight, up to 67% from 7 to 11 kg body weight, and entirely from 11 kg body weight without affecting the intestinal health and the growth performance of nursery pigs. Fermented soybean meal with Lactobacillus, however, increased the immune reaction and oxidative stress in the intestine consequently reducing the growth performance.

10.
Antioxidants (Basel) ; 12(5)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37237906

RESUMO

This study investigated intestinal oxidative damage caused by F18+Escherichia coli and its amelioration with antibacterial bacitracin fed to nursery pigs. Thirty-six weaned pigs (6.31 ± 0.08 kg BW) were allotted in a randomized complete block design. Treatments were: NC, not challenged/not treated; PC, challenged (F18+E. coli at 5.2 × 109 CFU)/not treated; AGP challenged (F18+E. coli at 5.2 × 109 CFU)/treated with bacitracin (30 g/t). Overall, PC reduced (p < 0.05) average daily gain (ADG), gain to feed ratio (G:F), villus height, and villus height to crypt depth ratio (VH:CD), whereas AGP increased (p < 0.05) ADG, and G:F. PC increased (p < 0.05) fecal score, F18+E. coli in feces, and protein carbonyl in jejunal mucosa. AGP reduced (p < 0.05) fecal score and F18+E. coli in jejunal mucosa. PC reduced (p < 0.05) Prevotella stercorea populations in jejunal mucosa, whereas AGP increased (p < 0.05) Phascolarctobacterium succinatutens and reduced (p < 0.05) Mitsuokella jalaludinii populations in feces. Collectively, F18+E. coli challenge increased fecal score and disrupted the microbiota composition, harming intestinal health by increasing oxidative stress, and damaging the intestinal epithelium, ultimately impairing growth performance. Dietary bacitracin reduced reduced F18+E. coli populations and the oxidative damages they cause, thereby improving intestinal health and the growth performance of nursery pigs.

11.
Animals (Basel) ; 12(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36552397

RESUMO

Currently, five crystalline essential amino acids (Lys, Met, Thr, Trp, and Val) are generally used, allowing formulation of low-crude-protein (CP) diets. Moreover, Ile may also be used depending on its economic value and the specific feeding program. Experimentally, it has been shown that further reduced CP levels can be achieved by supplemental His, Leu, and Phe to the diets. However, decreasing the dietary CP level while maintaining optimal ratios of amino acids has shown contradictory effects on pigs' growth performance. Due to the divergence in the literature and the importance for practical formulation strategies in the swine industry, a literature review and a meta-analysis were performed to estimate the minimum CP level that would not compromise pig performance. Based on the present review, there is a minimum CP level after which the growth performance of pigs can be compromised, even though diets are balanced for essential amino acids. Considering average daily gain and gain to feed, respectively, these levels were estimated to be 18.4% CP (95% confidence interval [CI]: 16.3 to 18.4) and 18.3% CP (95% CI: 17.4 to 19.2) for nursery, 16.1% CP (95% CI: 16.0 to 16.2) and 16.3% CP (95% CI: 14.5 to 18.0) for growing, and 11.6% CP (95% CI: 10.8 to 12.3) and 11.4% CP (95% CI: 10.3 to 12.5) for finishing pigs.

12.
Antioxidants (Basel) ; 11(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36290789

RESUMO

This study aimed to investigate the effects of phytobiotics on the intestinal health and growth performance of pigs. Totals of 40 newly-weaned pigs with 6.4 ± 0.3 kg BW (Exp. 1) and 120 growing pigs with 27.9 ± 2.3 kg BW (Exp. 2) were allotted in RCBD in a 2 × 2 factorial arrangement. The factors were: antibiotics as growth promoter (AGP) and phytobiotics (PHY). Pigs were fed experimental diets during 21 d (Exp. 1) and 42 d (Exp. 2). Growth performance, health parameters, and nutrient digestibility were evaluated. In Exp. 1, AGP diet increased (p < 0.05) ADG and G:F compared with a diet without AGP or PHY and a diet with AGP combined with PHY. PHY decreased (p < 0.05) TNF-α and IgG in the jejunum and protein carbonyl in plasma, whereas it increased (p < 0.05) the villus height. In Exp. 2, AGP or PHY diets increased (p < 0.05) ADG, ADFI, and G:F compared with a diet without AGP or PHY and a diet with AGP combined with PHY. PHY decreased (p < 0.05) IgG and PC in plasma. Collectively, AGP and PHY improved growth performance by reducing oxidative stress and enhancing immune status and jejunal morphology. However, the combinational use of phytobiotics with antibiotics suppressed their effect.

13.
J Anim Sci ; 100(10)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35950990

RESUMO

This study was to evaluate the effects of soy protein concentrate (SPC) supplementation replacing animal protein supplements on intestinal immune status, intestinal oxidative stress status, nutrient digestibility, mucosa-associated microbiota, and growth performance of nursery pigs. Thirty-two newly weaned pigs at 21 d of age with 6.4 ± 0.4 kg body weight (BW) were allotted to four treatments in a randomized complete block design with initial BW and sex as blocks. Pigs were fed for 35 d in three phases. Dietary treatments were SPC 0% (diets with fish meal 4/2/1%, poultry meal 10/8/4%, blood plasma 4/2/1%, and crude protein 24.6/22.6/20.9% for phase 1/2/3, respectively), SPC 33%, SPC 66%, and SPC 100% (SPC 0% diets with SPC replacing 33/66/100% of animal protein supplements, respectively). Pigs were euthanized on day 35 to collect jejunal mucosa and tissues to evaluate intestinal immune status, intestinal oxidative stress status, intestinal morphology, and mucosa-associated microbiota in the jejunum. Titanium dioxide was added in phase three diets as an indigestible marker. Ileal digesta was collected to measure apparent ileal digestibility (AID) of nutrients. Data were analyzed using MIXED and NLMIXED procedures of SAS. Increasing SPC supplementation by replacing animal protein supplements linearly decreased (P < 0.05) the BW, ADG, and ADFI of pigs during the overall period, and linearly increased (P < 0.05) peptide tyrosine tyrosine (PYY) in jejunum. Increasing SPC supplementation linearly decreased (P < 0.05) feed cost per weight gain. In the exponential model, SPC can replace animal protein supplements up to 10.5% and 16.5% without reducing the ADG and ADFI of pigs, respectively. The SPC 100% decreased (P < 0.05) Helicobacteraceae, Campylobacteraceae, alpha diversity, and changed beta diversity of microbiota in the jejunal mucosa. In conclusion, SPC supplementation replacing animal protein supplements reduced growth performance by reducing feed intake, which might be related to increased PYY. However, 10.5% and 16.8% of animal protein supplements can be replaced by SPC without affecting BW gain and feed intake of nursery pigs, respectively. Complete removal of animal protein supplements by SPC supplementation modulated the composition of jejunal mucosa-associated microbiota by reducing Helicobacteraceae and Campylobacteraceae, whereas without affecting the intestinal immune status, intestinal oxidative stress status, intestinal morphology, and AID of nutrients in nursery pigs.


Due to the high-quality nutrients and functional compounds, animal protein supplements are generally included in nursery pig diets to relieve the negative impacts caused by weaning stress. However, the high cost, short supply, and potential safety issues of animal protein supplements limit their use. Soybean meal is commonly used in swine diets due to the high nutritional values and competitive cost, however, antinutritional factors in soybean meal have been shown to impair the health and growth of nursery pigs. Soy protein concentrate is processed from soybean meal by ethanol extraction and efficiently removes the anti-nutritional factors. The aim of this study was to investigate the effects of soy protein concentrate replacing animal protein supplements at various levels on intestinal immune status, intestinal oxidative stress status, nutrient digestibility, and growth performance of nursery pigs. The use of soy protein concentrate completely replacing animal protein supplements showed benefits on modulating the bacterial ecosystem on the mucosal lining of the small intestine by decreasing potentially harmful bacteria, whereas without affecting intestinal immune status, intestinal oxidative stress status, intestinal morphology, and nutrient digestibility. However, excessive use of soy protein concentrate replacing animal protein supplements decreased the weight gain of nursery pigs due to reduced feed intake.


Assuntos
Microbiota , Proteínas de Soja , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Digestão , Mucosa Intestinal/metabolismo , Nutrientes/metabolismo , Estresse Oxidativo , Peptídeos/metabolismo , Proteínas de Soja/metabolismo , Suínos , Tirosina/metabolismo , Aumento de Peso
14.
J Anim Sci ; 100(8)2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35666999

RESUMO

This study determined the supplemental effects of Lactobacillus fermentate (LBF, Adare Biome, France) on intestinal health and prevention of postweaning diarrhea caused by F18+Escherichia coli in nursery pigs. Sixty-four weaned pigs (6.6 ± 0.7 kg body weight) were allotted in a randomized complete block design to four treatments: NC: no challenge/no supplement; PC: E. coli challenge/no supplement; AGP: E. coli challenge/bacitracin (30 g/t feed); and PBT: E. coli challenge/LBF (2 kg/t feed). Bacitracin methylene disalicylate (BMD) was used as a source of bacitracin. On day 7, challenged groups were orally inoculated with F18+E. coli (2.4 × 1010 CFU), whereas NC received sterile saline solution. Growth performance was analyzed weekly, and pigs were euthanized at the end of 28 d feeding to analyze intestinal health. Data were analyzed using the Mixed procedure of SAS 9.4. During the post-challenge period, PC tended to decrease (P = 0.067) average daily gain (ADG) when compared with NC, whereas AGP increased (P < 0.05) when compared with PC; PBT tended to increase (P = 0.081) ADG when compared with PC. The PC increased fecal score (P < 0.05) during day 7 to 14 when compared with NC, whereas AGP decreased it (P < 0.05) during day 14 to 21 when compared with PC. The PC increased (P < 0.05) protein carbonyl, crypt cell proliferation, and the relative abundance of Helicobacter rodentium when compared with NC. However, AGP decreased (P < 0.05) crypt cell proliferation and H. rodentium and increased (P < 0.05) villus height, Bifidobacterium boum, Pelomonas spp., and Microbacterium ginsengisoli when compared with PC. The PBT reduced (P < 0.05) crypt cell proliferation and H. rodentium and increased (P < 0.05) Lactobacillus salivarius and Propionibacterium acnes when compared with PC. At the genus level, AGP and PBT increased (P < 0.05) the alpha diversity of jejunal mucosa-associated microbiota in pigs estimated with Chao1 richness estimator when compared with PC. Collectively, F18+E. coli reduced growth performance by adversely affecting microbiota and intestinal health. The LBF and BMD improved growth performance, and it was related to the enhanced intestinal health and increased diversity and abundance of beneficial microbiota in pigs challenged with F18+E. coli.


Newly weaned pigs are susceptible to multiple stressors that may lead to postweaning diarrhea, thereby causing significant economic losses in the swine industry. Enterotoxigenic Escherichia coli strains are the major agents causing diarrhea in newly weaned pigs. Subtherapeutic antibiotics have been employed by producers around the world to mitigate this issue. However, the use of antibiotics as growth promoters has become a public health concern because of microbial resistance. This study used Lactobacillus fermentate (LBF) as a postbiotic to help maintain healthy microbiota on the intestinal mucosa and to prevent postweaning diarrhea caused by E. coli F18+. Therefore, the aim of this study was to evaluate the effects of dietary supplementation of LBF on intestinal microbiota, intestinal health, and prevention of postweaning diarrhea caused by a challenge with E. coli F18+ in newly weaned pigs. Our model confirmed that the E. coli F18+ reduced growth performance by causing diarrhea, disruption of the microbiota composition, and increased immune response and oxidative stress in the small intestine of newly weaned pigs. Lactobacillus fermentate improved growth performance, and it was related to enhanced intestinal health and increased microbiota diversity in E. coli F18+-challenged pigs.


Assuntos
Infecções por Escherichia coli , Microbiota , Doenças dos Suínos , Ração Animal/análise , Animais , Bacitracina , Dieta/veterinária , Escherichia coli , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/veterinária , Mucosa Intestinal/microbiologia , Lactobacillus , Suínos , Doenças dos Suínos/microbiologia , Doenças dos Suínos/prevenção & controle , Desmame
15.
Pathogens ; 11(5)2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35631110

RESUMO

The objective of this study was to evaluate the significance of jejunal mucosa-associated microbiota and its impacts on the intestinal health of pigs challenged with F18+ Escherichia coli. Forty-four newly-weaned pigs were allotted to two treatments in a randomized complete block design with sex as blocks. Pigs were fed common diets for 28 d. At d 7 post-weaning, pigs were orally inoculated with saline solution or F18+ E. coli. At d 21 post-challenge, feces and blood were collected and pigs were euthanized to collect jejunal tissue to evaluate microbiota and intestinal health parameters. The relative abundance of Firmicutes and Bacteroidetes was lower (p < 0.05) in jejunal mucosa than in feces, whereas Proteobacteria was greater (p < 0.05) in jejunal mucosa. F18+ E. coli increased (p < 0.05) protein carbonyl, Helicobacteraceae, Pseudomonadaceae, Xanthomonadaceae, and Peptostreptococcaceae and reduced (p < 0.05) villus height, Enterobacteriaceae, Campylobacteraceae, Brachyspiraceae, and Caulobacteraceae in jejunal mucosa, whereas it reduced (p < 0.05) Spirochaetaceae and Oscillospiraceae in feces. Collectively, jejunal mucosa-associated microbiota differed from those in feces. Compared with fecal microbiota, the change of mucosa-associated microbiota by F18+ E. coli was more prominent, and it was mainly correlated with increased protein carbonyl and reduced villus height in jejunal mucosa impairing the intestinal health of nursery pigs.

16.
J Anim Sci ; 100(5)2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35404463

RESUMO

This study was conducted to investigate the functional roles of an endo-ß-1,4-xylanase on the intestinal health and growth performance of nursery pigs. A total of 60 pigs (21 d old, 6.9 ± 0.8 kg body weight [BW]) were allotted based on a randomized complete block design with sex and initial BW as blocks. Dietary treatments had nutrients meeting the requirements with increasing levels of endo-ß-1,4-xylanase (0, 220, 440, 880, 1,760 xylanase unit [XU] per kg feed) and fed to pigs in three phases (phases 1, 2, and 3 for 10, 14, and 14 d, respectively). Titanium dioxide (0.4%) was added to the phase 3 diets as an indigestible marker. On day 38, all pigs were euthanized to collect ileal digesta to measure apparent ileal digestibility (AID), jejunal digesta to measure viscosity, and jejunal mucosa to evaluate intestinal health. Data were analyzed using the MIXED procedure for polynomial contrasts and the NLMIXED procedure for broken line analysis of SAS. Increasing xylanase in the nursery diets reduced (linear, P < 0.05) the digesta viscosity in the jejunum. Increasing xylanase tended to reduce the relative abundance of Cupriavidus (P = 0.073) and Megasphaera (P = 0.063); tended to increase the relative abundance of Succinivibrio (P = 0.076) and Pseudomonas (P = 0.060); and had a quadratic effect (P < 0.05) on the relative abundance of Acinetobacter (maximum: 2.01% at 867 XU per kg feed). Xylanase from 0 to 1,087 XU per kg feed reduced (P < 0.05) jejunal malondialdehyde. Xylanase from 0 to 1,475 XU per kg feed increased (P < 0.05) the AID of neutral detergent fiber. Increasing xylanase increased (P < 0.05) the AID of ether extract and tended to increase (P = 0.058) the AID of crude protein. Increasing xylanase did not affect growth performance on overall period, whereas xylanase from 0 to 736 XU per kg feed increased (P < 0.05) average daily gain (ADG) during days 31 to 38. In conclusion, xylanase supplementation showed benefits on intestinal health by reducing digesta viscosity, the relative abundance of potentially harmful bacteria, and the oxidative stress in the jejunal mucosa, collectively enhancing intestinal morphology and the AID of nutrients. Xylanase supplementation at a range of 750 to 1,500 XU per kg feed provided benefits associated with reduced oxidative stress, increased nutrient digestibility, resulting in potential improvement on growth performance of nursery pigs by increasing the average daily feed intake and moderately improving the ADG throughout the last week of feeding.


Cereal grains and by-products from cereal processing are extensively used in diets for pigs. These feedstuffs contain soluble fiber that makes digesta viscous in the small intestine. Increased digesta viscosity interferes with the digestion process, changes the ecosystem of bacteria on the mucosal lining of the small intestine, and impairs the intestinal health of young pigs. Supplemental enzymes targeting soluble fiber have been used in feeding young pigs in order to remove the negative impacts of soluble fiber on nutrient utilization and intestinal health. This study used the enzyme xylanase that specifically targets xylan and arabinoxylan largely present in corn and corn by-products. The aim of this study was to investigate how effectively this xylanase work in the small intestine of young pigs by reducing digesta viscosity, positively modulating the bacterial ecosystem on the mucosal lining of the small intestine, improving intestinal health, nutrient digestibility, and finally supporting growth. Xylanase supplementation to feeds for nursery pigs showed benefits on intestinal health by reducing digesta viscosity, oxidative stress, and potentially harmful bacteria in the jejunal mucosa, collectively enhancing intestinal morphology and nutrient digestibility.


Assuntos
Ração Animal , Microbiota , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Digestão , Mucosa Intestinal , Jejuno , Suínos , Viscosidade
17.
Anim Nutr ; 8(1): 169-184, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34977387

RESUMO

The intestinal microbiota has gained increased attention from researchers within the swine industry due to its role in promoting intestinal maturation, immune system modulation, and consequently the enhancement of the health and growth performance of the host. This review aimed to provide updated scientific information on the interaction among intestinal microbiota, dietary components, and intestinal health of pigs. The small intestine is a key site to evaluate the interaction of the microbiota, diet, and host because it is the main site for digestion and absorption of nutrients and plays an important role within the immune system. The diet and its associated components such as feed additives are the main factors affecting the microbial composition and is central in stimulating a beneficial population of microbiota. The microbiota-host interaction modulates the immune system, and, concurrently, the immune system helps to modulate the microbiota composition. The direct interaction between the microbiota and the host is an indication that the mucosa-associated microbiota can be more effective in evaluating its effect on health parameters. It was demonstrated that the mucosa-associated microbiota should be evaluated when analyzing the interaction among diets, microbiota, and health. In addition, supplementation of feed additives aimed to promote the intestinal health of pigs should consider their roles in the modulation of mucosa-associated microbiota as biomarkers to predict the response of growth performance to dietary interventions.

18.
Anim Biosci ; 35(4): 605-613, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34727641

RESUMO

OBJECTIVE: The objective was to evaluate the efficacy of increasing supplementation of Yarrowia lipolytica (YL) up to 3.0% replacing 1.6% poultry fat and 0.9% blood plasma for growth performance, intestinal health and nutrient digestibility of diets fed to nursery pigs. METHODS: Twenty-four pigs weaned at 24 d of age (initial body weight at 7.2±0.6 kg) were allotted to three dietary treatments (n = 8) based on the randomized complete block. The diets with supplementation of YL (0.0%, 1.5%, and 3.0%, replacing poultry fat and blood plasma up to 1.6% and 0.9%, respectively) were fed for 21 d. Feed intake and body weight were recorded at d 0, 10, and 21. Fecal score was recorded at every odd day from d 3 to 19. Pigs were euthanized on d 21 to collect proximal and distal jejunal mucosa to measure intestinal health markers including tumor necrosis factor-alpha, interleukin-8, immunoglobulin A and immunoglobulin G. Ileal digesta was collected for apparent ileal digestibility (AID) of nutrients in diets. Data were analyzed using Proc Mixed of SAS. RESULTS: Supplementation of YL (1.5% and 3.0%) replacing poultry fat and blood plasma did not affect growth performance, fecal score and intestinal health. Supplementation of YL at 1.5% did not affect nutrient digestibility, whereas supplementation of YL at 3.0% reduced AID of dry matter (40.2% to 55.0%), gross energy (44.0% to 57.5%), crude protein (52.1% to 66.1%), and ether extract (50.8% to 66.9%) compared to diets without supplementation. CONCLUSION: Yarrowia lipolytica can be supplemented at 1.5% in nursery diets, replacing 0.8% poultry fat and 0.45% blood plasma without affecting growth performance, intestinal health and nutrient digestibility. Supplementation of YL at 3.0% replacing 1.6% poultry fat and 0.9% blood plasma did not affect growth performance and intestinal health, whereas nutrient digestibility was reduced.

19.
J Anim Sci ; 99(12)2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34902029

RESUMO

The objective was to determine the nutritional and functional values of lysed Corynebacterium glutamicum cell mass (CGCM) as a protein supplement and a source of cell wall fragments supporting the growth and intestinal health of nursery pigs. Thirty-two pigs (21 d of age) were allotted to four treatments (n = 8) based on the randomized block design with sex and initial body weight (BW) as blocks. The main effect was the dietary supplementation of lysed CGCM (0, 0.7, 1.4, and 2.1%) replacing blood plasma and fed in two phases (10 and 11 d, respectively). Feed intake and BW were measured at the end of each phase. Pigs were euthanized on day 21 to collect jejunal tissue and mucosa to evaluate intestinal health. Ileal digesta were collected to measure the apparent ileal digestibility of nutrients in diets. Data were analyzed using Proc Mixed and Reg of SAS. Increasing daily intake of CGCM increased (linear; P < 0.05) ADG of pigs. Increasing CGCM supplementation affected (quadratic; P < 0.05) the relative abundance of Lactobacillaceae (minimum: 26.4% at 1.2% CGCM), Helicobacteraceae (maximum: 29.3% at 1.2% CGCM), and Campylobacteraceae (maximum: 9.0% at 1.0% CGCM). Increasing CGCM supplementation affected (quadratic; P < 0.05) the concentrations of immunoglobulin G (maximum: 4.94 µg/mg of protein at 1.0% CGCM) and protein carbonyl (PC; maximum: 6.12 nmol/mg of protein at 1.1% CGCM), whereas linearly decreased (P < 0.05) malondialdehyde (MDA) in the proximal jejunal mucosa. Increasing CGCM supplemention affected (quadratic; P < 0.05) intestinal enterocyte proliferation rate (maximum: 13.3% at 1.0% CGCM), whereas it did not affect intestinal morphology and the nutrient digestibility. In conclusion, supplementing 1.0% to 1.2%, reducing blood plasma supplementation by 0.7% to 0.9%, respectively, increased potential pathogenic microbiota associated in the jejunal mucosa resulting in increased immune response, enterocyte proliferation, and PC concentration. However, supplementing diets with 2.1% CGCM, replacing 1.5% blood plasma, improved growth performance, and reduced MDA without affecting nutrient digestibility, intestinal morphology, and microbiota in the jejunal mucosa. In this study, based on the polynomial contrast, supplementing 1.0% to 1.2% CGCM suppressed the benefits from blood plasma, whereas supplementing 2.1% CGCM showed functional benefits of CGCM with similar effects from blood plasma supplementation.


Assuntos
Ração Animal , Corynebacterium glutamicum , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais , Intestinos , Suínos
20.
Animals (Basel) ; 11(12)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34944129

RESUMO

This study aimed to determine supplemental effects of phytase on modulation of the mucosa-associated microbiota in the jejunum, intestinal morphology, nutrient digestibility, bone parameters, and growth performance of broiler chickens. Three hundred and sixty newly hatched broiler chickens (Ross 308) (44 ± 2 g BW) were randomly allotted in 6 treatments with 10 birds per cage based on a completely randomized design and fed for 27 d. The treatments consisted of one negative control (NC), diet formulated meeting the requirements suggested by Ross recommendations (2019), and without phytase supplementation. The other treatments consisted of a positive control diet (PC) formulated with 0.15% deficient Ca and P and split into 5 treatments with different phytase inclusion levels (0, 500, 1000, 2000, 4000 FTU/kg feed). Titanium dioxide (0.4%) was added to feeds as an indigestible marker to measure apparent ileal digestibility (AID) of nutrients. On d 27, 3 birds were randomly selected from each cage and euthanized to collect samples for analyzing the mucosa-associated microbiota in the jejunum, oxidative stress status, AID, and bone parameters. Data were analyzed using the proc Mixed of SAS 9.4. Phytase supplementation tended to have a quadratic effect (p = 0.078) on the overall ADG (maximum: 41 g/d at 2833 FTU/kg of feed). Supplementation of phytase at 2,000 FTU/kg increased (p < 0.05) the relative abundance of Lactobacillus and reduced (p < 0.05) Pelomonas. Moreover, it tended to reduce Helicobacter (p = 0.085), Pseudomonas (p = 0.090) Sphingomonas (p = 0.071). Phytase supplementation increased (p < 0.05) the villus height and the AID of CP; and tended to increase (p = 0.086) the AID of P. Phytase supplementation increased (p < 0.05) breaking strength and P content in the tibia. In conclusion, phytase supplementation showed potential benefits on the modulation of the mucosa-associated microbiota in the jejunum by tending to reduce harmful bacteria (Pelomonas, Helicobacter, and Pseudomonas) and increase beneficial bacteria (Lactobacillus). In addition, it showed positive effects increasing apparent ileal digestibility of CP and P, enhancing intestinal morphology (villus height), and improving the bone parameters (bone breaking strength, ash, and P content). Phytase supplementation at a range of 38 to 59 FTU/d or 600 to 950 FTU/kg of feed provided the most benefits related to nutrient digestibility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA