Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Acta Trop ; 241: 106865, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36787861

RESUMO

In the present study, an immunoproteomic approach using Leishmania infantum parasites isolated from naturally infected dogs from an endemic region of the disease, was carried out to identify new antigens to be used in the diagnosis of canine visceral leishmaniasis (CVL). Protein extracts, obtained from parasites isolated from asymptomatic (CanLA) and symptomatic (CanLS) dogs, were used to perform the two-dimensional gels. Western Blotting assays were carried out by employing a pool of sera from dogs with visceral leishmaniasis (CanLA or CanLS), healthy dogs from an endemic area, or dogs with similar diseases associated with cross-reactions (babesiosis and ehrlichiosis). With these results, it was possible to exclude the spots that showed a cross-reactivity of the sera from groups of healthy dogs, and those with babesiosis or ehrlichiosis. Taken together, 20 proteins were identified, 15 of which have already been described in the literature and 5 of which are hypothetical. An immunogenomic screen strategy was applied to identify conserved linear B-cell epitopes in the identified hypothetical proteins. Two peptides were synthesized and tested in ELISA experiments as a proof of concept for the validation of our immunoproteomics findings. The results demonstrated that the antigens presented sensitivity and specificity values ranging from 81.93% to 97.59% and 78.14 to 85.12%, respectively. As a comparative antigen, a preparation of a Leishmania extract showed sensitivity and specificity values of 75.90% and 74.88%, respectively. The present study was able to identify proteins capable of being used for the serodiagnosis of canine visceral leishmaniasis.


Assuntos
Babesiose , Doenças do Cão , Leishmania infantum , Leishmaniose Visceral , Animais , Cães , Leishmaniose Visceral/diagnóstico , Leishmaniose Visceral/veterinária , Antígenos de Protozoários , Doenças do Cão/parasitologia , Ensaio de Imunoadsorção Enzimática/métodos , Sensibilidade e Especificidade , Testes Sorológicos/métodos
2.
Acta Trop ; 237: 106749, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36370753

RESUMO

The pathogenesis of Chronic Chagas Cardiomyopathy (CCC) is still not fully understood, and the persistence of the parasite in tissues seems to be essential for the onset and progression of heart disease, tissue destruction, and chronic inflammation. It is clear that the polarity found between the asymptomatic (IND) and cardiac clinical forms refers mainly to the mechanisms involved in the regulation of the host's immune response. Thus, to elucidate aspects of the susceptibility of host phagocytes to T. cruzi infection, the present study explored novel aspects of innate immune response, integrating data on susceptibility to infection and intracellular replication, using monocyte-derived macrophages from CCC patients, together with memory CD4+ T-cells (CD45RO+). The isolation of PBMC was conducted by means of in vitro infection assay with T. cruzi trypomastigotes and flow cytometry analysis of the intracytoplasmic cytokine production by CD4+T-cells. Our findings indicated that monocytes derived from individuals with CCC are more susceptible to the infection and replication of intracellular amastigotes. Moreover, the stimulation of CD4+ T-cells from CCC patients, together with T. cruzi trypomastigotes, induces a predominance of a regulatory response over a type 1 response, demonstrated by an increase in IL-10 production and a reduction in the IFN-γ and IFN-γ/IL-10. Suppression of the function of monocyte-derived macrophages, from CCC patients, to control trypomastigote infection and intracellular replication sheds light on a potential susceptibility of these cells isolated from peripheral blood, which may reflect the ineffectiveness of parasite control by phagocytes in cardiac tissues, which can subsequently result in serious heart disease.


Assuntos
Cardiomiopatia Chagásica , Doença de Chagas , Trypanosoma cruzi , Humanos , Interleucina-10 , Leucócitos Mononucleares , Linfócitos T , Macrófagos , Imunidade
3.
Appl Microbiol Biotechnol ; 106(12): 4627-4641, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35759035

RESUMO

Tegumentary leishmaniasis (TL) is a disease of high severity and incidence in Brazil, and Leishmania braziliensis is its main etiological agent. The inefficiency of control measures, such as high toxicity and costs of current treatments and the lack of effective immunoprophylactic strategies, makes the development of vaccines indispensable and imminent. In this light, the present work developed a gene encoding multiple T-cell (CD4+/CD8+) epitope, derived from conserved proteins found in Leishmania species and associated with TL, to generate a chimeric protein (rMEP/TL) and compose a vaccine formulation. For this, six T-cell epitopes were selected by immunoinformatics approaches from proteins present in the amastigote stage and associated with host-parasite interactions. The following formulations were then tested in an L. braziliensis murine infection model: rMEP/TL in saline or associated with MPLA-PHAD®. Our data revealed that, after immunization (three doses; 14-day intervals) and subsequent challenging, rMEP/TL and rMEP/TL + MPLA-vaccinated mice showed an increased production of key immunological biomarkers of protection, such as IgG2a, IgG2a/IgG1, NO, CD4+, and CD8+ T-cells with IFN-γ and TNF-α production, associated with a reduction in CD4+IL-10+ and CD8+IL-10+ T-cells. Vaccines also induced the development of central (CD44highCD62Lhigh) and effector (CD44highCD62Llow) memory of CD4+ and CD8+ T-cells. These findings, associated with the observation of lower rates of parasite burdens in the vaccinated groups, when compared to the control groups, suggest that immunization with rMEP/TL and, preferably, associated with an adjuvant, may be considered an effective tool to prevent TL. KEY POINTS: • Rational design approaches for vaccine development. • Central and effector memory of CD4+ and CD8+ T-cells. • Vaccine comprised of rMEP/TL plus MPLA as an effective tool to prevent TL.


Assuntos
Vacinas contra Leishmaniose , Leishmaniose , Animais , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Epitopos de Linfócito T/genética , Imunoglobulina G , Interleucina-10/metabolismo , Leishmaniose/prevenção & controle , Vacinas contra Leishmaniose/genética , Camundongos , Camundongos Endogâmicos BALB C
4.
Front Immunol ; 13: 825007, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35634280

RESUMO

Leishmaniasis is a neglected tropical disease (NTD) caused by parasites belonging to the Leishmania genus for which there is no vaccine available for human use. Thus, the aims of this study are to evaluate the immunoprotective effect of a first-generation vaccine against L. amazonensis and to identify its immunodominant antigens. BALB/c mice were inoculated with phosphate buffer sodium (PBS), total L. amazonensis antigens (TLAs), or TLA with Poly (I:C) and Montanide ISA 763. The humoral and cellular immune response was evaluated before infection. IgG, IgG1, and IgG2a were measured on serum, and IFN-γ, IL-4, and IL-10 cytokines as well as cell proliferation were measured on a splenocyte culture from vaccinated mice. Immunized mice were challenged with 104 infective parasites of L. amazonensis on the footpad. After infection, the protection provided by the vaccine was analyzed by measuring lesion size, splenic index, and parasite load on the footpad and spleen. To identify immunodominant antigens, total proteins of L. amazonensis were separated on 2D electrophoresis gel and transferred to a membrane that was incubated with serum from immunoprotected mice. The antigens recognized by the serum were analyzed through a mass spectrometric assay (LC-MS/MS-IT-TOF) to identify their protein sequence, which was subjected to bioinformatic analysis. The first-generation vaccine induced higher levels of antibodies, cytokines, and cell proliferation than the controls after the second dose. Mice vaccinated with TLA + Poly (I:C) + Montanide ISA 763 showed less footpad swelling, a lower splenic index, and a lower parasite load than the control groups (PBS and TLA). Four immunodominant proteins were identified by mass spectrometry: cytosolic tryparedoxin peroxidase, an uncharacterized protein, a kinetoplast-associated protein-like protein, and a putative heat-shock protein DNAJ. The identified proteins showed high levels of conserved sequence among species belonging to the Leishmania genus and the Trypanosomatidae family. These proteins also proved to be phylogenetically divergent to human and canine proteins. TLA + Poly (I:C) + Montanide ISA 763 could be used as a first-generation vaccine against leishmaniasis. The four proteins identified from the whole-protein vaccine could be good antigen candidates to develop a new-generation vaccine against leishmaniasis.


Assuntos
Leishmania , Leishmaniose Cutânea , Vacinas , Animais , Cromatografia Líquida , Citocinas/metabolismo , Cães , Epitopos Imunodominantes , Leishmaniose Cutânea/prevenção & controle , Camundongos , Óleo Mineral , Poli I-C , Espectrometria de Massas em Tandem
5.
Acta Trop ; 232: 106521, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35595092

RESUMO

Diagnosis of tegumentary leishmaniasis (TL) is essential to avoid permanent damage and severe functional sequelae and there is an urgent need to discover new antigens. The present study aimed to comprehensively evaluate the potential use of the Tryparedoxin Peroxidase (TryP) as an antigen for serological tests. The proposal integrates data from immunoproteomics with immunoinformatics, in addition to a precise analysis of protein levels in the evolutionary stages of the parasite by flow cytometry. To evaluate the performance in the diagnosis of TL, Enzyme-Linked Immunosorbent Assay (ELISA) assays were performed using the recombinant protein and the respective B-cell epitope, followed by an analysis of the contribution of this peptide in the recognition of the protein by patients, evaluated by serum depletion assays. We showed that the TryP has a linear B-cell epitope with high divergence compared to orthologs from Trypanosoma cruzi and Homo sapiens. The results also show high expression and positive cells for TryP (TryP+) in the infective metacyclic promastigotes (MET) and intracellular (24 and 48 hours) stages. From the depletion assays, it was possible to confirm the contribution of the peptide in the specific recognition of the TryP protein by patients with TL (13.7-15.9%). ELISA using the peptide showed high performance in the diagnosis compared to the recombinant TryP (rTryP), Soluble Leishmania braziliensis Antigen (sLba) and Immunofluorescence Assay (IFA) with accuracy of 94.29, 89.29, 65.00 and 37.14%, respectively). We can conclude that the MNEPAPP peptide is a potential antigen for the diagnosis of TL.


Assuntos
Leishmaniose Cutânea , Leishmaniose , Anticorpos Antiprotozoários , Antígenos de Protozoários/genética , Ensaio de Imunoadsorção Enzimática/métodos , Epitopos de Linfócito B , Humanos , Leishmaniose Cutânea/parasitologia , Peptídeos , Peroxidases , Proteínas de Protozoários/genética
6.
Front Immunol, v. 13, 825007, maio. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4379

RESUMO

Leishmaniasis is a neglected tropical disease (NTD) caused by parasites belonging to the Leishmania genus for which there is no vaccine available for human use. Thus, the aims of this study are to evaluate the immunoprotective effect of a first-generation vaccine against L. amazonensis and to identify its immunodominant antigens. BALB/c mice were inoculated with phosphate buffer sodium (PBS), total L. amazonensis antigens (TLAs), or TLA with Poly (I:C) and Montanide ISA 763. The humoral and cellular immune response was evaluated before infection. IgG, IgG1, and IgG2a were measured on serum, and IFN-γ, IL-4, and IL-10 cytokines as well as cell proliferation were measured on a splenocyte culture from vaccinated mice. Immunized mice were challenged with 104 infective parasites of L. amazonensis on the footpad. After infection, the protection provided by the vaccine was analyzed by measuring lesion size, splenic index, and parasite load on the footpad and spleen. To identify immunodominant antigens, total proteins of L. amazonensis were separated on 2D electrophoresis gel and transferred to a membrane that was incubated with serum from immunoprotected mice. The antigens recognized by the serum were analyzed through a mass spectrometric assay (LC-MS/MS-IT-TOF) to identify their protein sequence, which was subjected to bioinformatic analysis. The first-generation vaccine induced higher levels of antibodies, cytokines, and cell proliferation than the controls after the second dose. Mice vaccinated with TLA + Poly (I:C) + Montanide ISA 763 showed less footpad swelling, a lower splenic index, and a lower parasite load than the control groups (PBS and TLA). Four immunodominant proteins were identified by mass spectrometry: cytosolic tryparedoxin peroxidase, an uncharacterized protein, a kinetoplast-associated protein-like protein, and a putative heat-shock protein DNAJ. The identified proteins showed high levels of conserved sequence among species belonging to the Leishmania genus and the Trypanosomatidae family. These proteins also proved to be phylogenetically divergent to human and canine proteins. TLA + Poly (I:C) + Montanide ISA 763 could be used as a first-generation vaccine against leishmaniasis. The four proteins identified from the whole-protein vaccine could be good antigen candidates to develop a new-generation vaccine against leishmaniasis.

7.
Appl Microbiol Biotechnol ; 105(18): 6805-6817, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34432132

RESUMO

Leishmania braziliensis is responsible for most cases of human tegumentary leishmaniasis (HTL) and has caused a wide range of clinical manifestations, including cutaneous (CL) and mucosal leishmaniasis (ML). The diagnosis is based on criteria that consider epidemiological data, clinical findings, and laboratory tests and is hard to establish. For laboratory tests, none of the assays available can be considered gold standards for disease detection. In addition, the Montenegro skin test, essential to supporting infectologists in the clinical management of the disease, is no longer available in Brazil. Thus, the aim of this study was to develop new targets to be used in diagnostic tests for HTL. In the first step, we carried out two-dimensional gel electrophoresis, followed by mass spectrometry, combined with heat map analysis and immunoproteomics approach, and disclosed eight proteins expressed in the amastigote stage specifically recognized by serum from CL and ML patients. A chimeric protein was designed based on the combination of thirteen linear B-cell epitopes, identified by immunoinformatics analysis, from L. braziliensis proteins. Our results showed that the strategy used in this work was successful in developing an antigen to be used in immunological assays (100.0% sensitivity and specificity) in the detection of HTL cases and in comparison with results obtained from an ELISA using soluble L. braziliensis antigen (SLb-Antigen) and immunofluorescence assay (Bio-Manguinhos/FIOCRUZ). The present technology opens the door for its use in field exams by means of an immunochromatographic test, which will be even more helpful in regions without laboratory structures.Key points• Rational strategy to develop antigens.• Integration between immunoproteomic and immunoinformatics analysis.• Chimeric protein shows high performance in HTL diagnosis.


Assuntos
Leishmania braziliensis , Leishmaniose Cutânea , Ensaio de Imunoadsorção Enzimática , Humanos , Leishmaniose Cutânea/diagnóstico , Proteômica , Proteínas Recombinantes de Fusão
8.
PLoS One ; 13(12): e0209599, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30571783

RESUMO

Visceral leishmaniasis (VL) still represents a serious public health problem in Brazil due to the inefficiency of the control measures currently employed, that included early diagnosis and treatment of human cases, vector control, euthanasia of infected dogs and, recently approved in Brazil, treatment with Milteforam drug. Effective clinical management depend largely on early and unequivocal diagnosis, however, cross-reactivity have also been described in serological tests, especially when it refers to individuals from areas where Chagas' disease is also present. Thus, to discover new antigens to improve the current serological tests for VL diagnosis is urgently needed. Here, we performed an immunogenomic screen strategy to identify conserved linear B-cell epitopes in the predicted L. infantum proteome using the following criteria: i) proteins expressed in the stages found in the vertebrate host, amastigote stage, and secreted/excreted, to guarantee greater exposure to the immune system; ii) divergent from proteins present in other infectious disease pathogens with incidence in endemic areas for VL, as T. cruzi; iii) highly antigenic to humans with different genetic backgrounds, independently of the clinical stage of the disease; iv) stable and adaptable to quality-control tests to guarantee reproducibility; v) using statistical analysis to determine a suitable sample size to evaluate accuracy of diagnostic tests established by receiver operating characteristic strategy. We selected six predicted linear B-cell epitopes from three proteins of L. infantum parasite. The results demonstrated that a mixture of peptides (Mix IV: peptides 3+6) were able to identify VL cases and simultaneously able to discriminate infections caused by T. cruzi parasite with high accuracy (100.00%) and perfect agreement (Kappa index = 1.000) with direct methods performed by laboratories in Brazil. The results also demonstrated that peptide-6, Mix III (peptides 2+6) and I (peptides 2+3+6) are potential antigens able to used in VL diagnosis, represented by high accuracy (Ac = 99.52%, 99.52% and 98.56%, respectively). This study represents an interesting strategy for discovery new antigens applied to serologic diagnosis which will contribute to the improvement of the diagnosis of VL and, consequently, may help in the prevention, control and treatment of the disease in endemic areas of Brazil.


Assuntos
Antígenos de Protozoários/sangue , Diagnóstico Precoce , Leishmania infantum/isolamento & purificação , Leishmaniose Visceral/sangue , Animais , Antígenos de Protozoários/imunologia , Brasil , Doença de Chagas/sangue , Doença de Chagas/imunologia , Doença de Chagas/parasitologia , Reações Cruzadas , Testes Diagnósticos de Rotina , Doenças do Cão/sangue , Doenças do Cão/epidemiologia , Doenças do Cão/parasitologia , Cães , Ensaio de Imunoadsorção Enzimática , Humanos , Imunogenética/métodos , Leishmania infantum/imunologia , Leishmania infantum/patogenicidade , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/parasitologia , Testes Sorológicos
9.
Appl Microbiol Biotechnol ; 102(14): 6069-6080, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29736822

RESUMO

Serological tests are preferentially used for the diagnosis of Chagas' disease (CD) during the chronic phase because of the low parasitemia and high anti-Trypanosoma cruzi antibody titers. However, the current methods showed several disadvantages, as contradictory or inconclusive results, mainly related to the characteristics of the antigens used, in general, crude or whole parasites, but also due to antigen production protocol and the experimental conditions used in serological tests. Thus, better-quality serological assays are urgently needed. Here, we performed a wide immunogenomic screen strategy to identify conserved linear B-cell epitopes in the predicted proteome based on genome sequence from T. cruzi strains to will be applied as synthetic peptides in the serodiagnosis of the chronic CD. Three B-cell epitopes derived from mucin-associated surface protein (MASP) family, expressed in both infective parasite stages, trypomastigote and amastigotes, conserved in T. cruzi strains, and highly divergent as compared with Leishmania spp. proteome, were selected for this study. The results demonstrated that synthetic peptide 2 and a mixture of peptides (Mix II: peptides 2 and 3) were able to identify all chronic CD cases, indeterminate or Chagas cardiomyopathy clinical presentation, and simultaneously able to discriminate infections caused by Leishmania parasites, with high accuracy (98.37 and 100.00%, respectively) and agreement (kappa index = 0.967 and 1.000, respectively) with direct methods as compared to current diagnostic pipeline performed by reference laboratories in Brazil. This study represents an interesting strategy for the discovery of new antigens applied to serologic diagnosis of infectious diseases and for the technological development of platforms for large-scale production of diagnostic tests.


Assuntos
Antígenos de Protozoários/imunologia , Doença de Chagas/diagnóstico , Epitopos de Linfócito B/imunologia , Genômica , Trypanosoma cruzi/imunologia , Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/genética , Brasil , Doença de Chagas/imunologia , Ensaio de Imunoadsorção Enzimática , Mapeamento de Epitopos , Humanos , Proteoma , Testes Sorológicos , Trypanosoma cruzi/genética
10.
Basic Clin Pharmacol Toxicol ; 123(3): 236-246, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29481714

RESUMO

In this study, a quinoline derivate, clioquinol (5-chloro-7-iodoquinolin-8-ol), was evaluated against Leishmania amazonensis and Leishmania infantum promastigotes and amastigotes. The cytotoxicity in murine macrophages and human red blood cells, as well as the efficacy in treating infected macrophages and the inhibition of infection using pre-treated parasites were also evaluated. Results showed that clioquinol inhibited L. amazonensis and L. infantum promastigotes with effective concentration 50% (EC50 ) values of 2.55 ± 0.25 and 1.44 ± 0.35 µg/mL, respectively, and of 1.88 ± 0.13 and 0.98 ± 0.17 µg/mL against axenic amastigotes, respectively. The cytotoxic EC50 concentrations of clioquinol in murine macrophages and human red blood cells were, respectively, 255 ± 23 and 489 ± 20 µg/mL. With these results, the selectivity index was calculated, showing values of 99.9 and 177.1 against promastigotes, respectively, and of 135.6 and 260.1 against axenic amastigotes, respectively. Significant reductions in the percentage of infected macrophages after treatment using clioquinol were also observed, as well as when parasites were pre-treated with clioquinol and used to infect murine macrophages. The mechanism of action of clioquinol was investigated in L. amazonensis, and results revealed morphological and biochemical alterations in the clioquinol-treated parasites, including reduction in cell volume, loss of mitochondrial membrane potential, increase in the ROS production and rupture of the plasma membrane. The externalization of phosphatidylserine (PS) at the cell surface was evaluated in treated parasites that had been doubly labelled with annexin and propidium iodide (PI). The results showed no significant difference for PS exposure when compared to the untreated control, although a significant increase in the PI/annexin V-labelled cell population was found in the treated parasites. Results suggest that clioquinol induces a discontinuity of the parasite membrane, possibly related to a characteristic event of cell death caused by necrosis. This study demonstrates, for the first time, the antileishmanial activity of clioquinol against two relevant Leishmania species and suggests that the mitochondria of the parasites may be a possible biological target leading to parasite necrosis. Our findings suggest that clioquinol may have a potential application in treatment of leishmaniasis and further studies should be performed in infected mammalian hosts.


Assuntos
Antiprotozoários/farmacologia , Clioquinol/farmacologia , Leishmania infantum/efeitos dos fármacos , Leishmania mexicana/efeitos dos fármacos , Animais , Antiprotozoários/administração & dosagem , Clioquinol/administração & dosagem , Eritrócitos/efeitos dos fármacos , Feminino , Humanos , Leishmaniose/tratamento farmacológico , Leishmaniose/parasitologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/parasitologia , Espécies Reativas de Oxigênio/metabolismo
11.
Parasitol Res ; 117(2): 391-403, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29248978

RESUMO

Leishmaniasis has become a significant public health issue in several countries in the world. New products have been identified to treat against the disease; however, toxicity and/or high cost is a limitation. The present work evaluated the antileishmanial activity of a new naphthoquinone derivate, Flau-A [2-(2,3,4-tri-O-acetyl-6-deoxy-ß-L-galactopyranosyloxy)-1,4-naphthoquinone], against promastigote and amastigote-like stages of Leishmania amazonensis and L. infantum. In addition, the cytotoxicity in murine macrophages and human red cells was also investigated. The mechanism of action of Flau-A was assessed in L. amazonensis as well as its efficacy in treating infected macrophages and inhibiting infection of pretreated parasites. Results showed that Flau-A was effective against promastigotes and amastigote-like forms of both parasite species, as well as showed low toxicity in mammalian cells. Results also highlighted the morphological and biochemical alterations induced by Flau-A in L. amazonensis, including loss of mitochondrial membrane potential, as well as increased reactive oxygen species production, cell shrinkage, and alteration of the plasma membrane integrity. The present study demonstrates for the first time the antileishmanial activity of Flau-A against two Leishmania species and suggests that the mitochondria of the parasites may be the main target organelle. Data shown here encourages the use of this molecule in new studies concerning treatment against Leishmania infection in mammalian hosts.


Assuntos
Antiprotozoários/farmacologia , Leishmania infantum/efeitos dos fármacos , Leishmania mexicana/efeitos dos fármacos , Naftoquinonas/farmacologia , Animais , Eritrócitos/efeitos dos fármacos , Feminino , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/efeitos dos fármacos , Naftoquinonas/química
12.
Parasit Vectors ; 10(1): 617, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29268793

RESUMO

BACKGROUND: The development of a vaccine for the prevention of visceral leishmaniasis (VL) still represents a significant unmet medical need. A human vaccine can be found if one takes into consideration that many people living in endemic areas of disease are infected but do not develop active VL, including those subjects with subclinical or asymptomatic infection. METHODS: In this study, a phage display was used to select phage-exposed peptides that were specific to immunoglobulin G (IgG) antibodies from asymptomatic and symptomatic VL patients, separating them from non-infected subjects. Phage clones presenting valid peptide sequences were selected and used as stimuli of peripheral blood mononuclear cells (PBMCs) obtained from both patients' groups and controls. Those with higher interferon-gamma (IFN-γ)/interleukin (IL)-10 ratios were further selected for vaccination tests. RESULTS: Among 17 evaluated clones, two were selected, B1 and D11, and used to immunize BALB/c mice in an attempt to further validate their in vivo protective efficacy against Leishmania infantum infection. Both clones induced partial protection against the parasite challenge, which was evidenced by the reduction of parasitism in the evaluated organs, a process mediated by a specific T helper (Th)1 immune response. CONCLUSIONS: To the best of our knowledge, this study is the first to use a rational strategy based on in vitro stimulation of human PBMCs with selected phage-displayed clones to obtain new immunogens against VL.


Assuntos
Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/imunologia , Leishmania infantum/imunologia , Leishmaniose Visceral/prevenção & controle , Vacinas Protozoárias/imunologia , Vacinas Protozoárias/isolamento & purificação , Células Th1/imunologia , Animais , Humanos , Imunoensaio , Interferon gama/metabolismo , Interleucina-10/metabolismo , Leishmaniose Visceral/imunologia , Programas de Rastreamento , Camundongos Endogâmicos BALB C , Biblioteca de Peptídeos
13.
Vet Parasitol ; 238: 77-81, 2017 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-28385540

RESUMO

In the present study, Leishmania braziliensis enolase was cloned and the recombinant protein (rEnolase) was evaluated for the serodiagnosis of canine and human visceral leishmaniosis (VL). For the canine VL diagnosis, this study examined serum samples of Leishmania infantum-infected dogs, from non-infected animals living in endemic or non-endemic areas of leishmaniosis, as well as those from Leish-Tec®-vaccinated dogs and Trypanosoma cruzi or Ehrlichia canis experimentally infected animals. For the human VL diagnosis, this study analyzed serum samples from VL patients, from non-infected subjects living in endemic or non-endemic areas of leishmaniosis, as well as those from T. cruzi-infected patients. In the results, an indirect ELISA method using rEnolase showed diagnostic sensitivity and specificity values of 100% and 98.57%, respectively, for canine VL serodiagnosis, and of 100% and 97.87%, respectively, for human VL diagnosis. These results showed rEnolase with an improved diagnostic performance when compared to the recombinant A2 protein, the crude soluble Leishmania antigenic preparation, and the recombinant K39-based immunochromatographic test. In conclusion, preliminary results suggest that the detection of antibodies against rEnolase improves the serodiagnosis of human and canine visceral leishmaniosis.


Assuntos
Doenças do Cão/sangue , Leishmania braziliensis/enzimologia , Leishmaniose Cutânea/veterinária , Fosfopiruvato Hidratase/sangue , Testes Sorológicos/veterinária , Adulto , Animais , Biomarcadores , Clonagem Molecular , Doenças do Cão/diagnóstico , Doenças do Cão/parasitologia , Cães , Feminino , Humanos , Leishmaniose Cutânea/sangue , Leishmaniose Cutânea/diagnóstico , Leishmaniose Cutânea/parasitologia , Masculino , Pessoa de Meia-Idade , Proteínas Recombinantes , Testes Sorológicos/métodos , Adulto Jovem
14.
Parasitol Res ; 116(4): 1197-1206, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28150041

RESUMO

The serodiagnosis for tegumentary leishmaniasis (TL) presents problems related to the sensitivity and/or specificity of the tests. In the present study, an enzyme-linked immunosorbent assay (ELISA) technique was used to evaluate the performance from a Leishmania braziliensis hypothetical protein, LbHyM, in an attempt to compare its serological reactivity with a soluble Leishmania antigenic preparation (SLA) for the serodiagnosis of cutaneous (CL) and mucosal (ML) leishmaniasis. LbHyM was predicted to be a kinesin-like protein by bioinformatics tools. Serum samples were collected from both CL and ML patients, as well as from those with Chagas disease and from healthy subjects living in endemic or non-endemic areas of TL. Also, sera were collected from patients before and after the treatments, seeking to evaluate their serological follow-up in relation to the anti-protein and anti-parasite antibody levels. When an ELISA-rLbHyM assay was performed, it proved to be significantly more sensitive than ELISA-L. braziliensis SLA in detecting both CL and ML patients. Also, when using sera from Chagas disease patients, the ELISA-rLbHyM proved to be more specific than ELISA-SLA. The anti-protein and anti-parasite antibody levels were also evaluated 6 months after the treatments, and treated patients showed significantly lower levels of specific-rLbHyM antibodies, when compared to the anti-parasite antibody levels. In conclusion, the ELISA-rLbHyM assay can be considered a confirmatory serological technique for the serodiagnosis of L. braziliensis infection and can also be used in the serological follow-up of treated patients, aiming to correlate the low anti-protein antibody levels with the improvement of the healthy state of the patients.


Assuntos
Anticorpos Antiprotozoários/sangue , Doença de Chagas/diagnóstico , Cinesinas/imunologia , Leishmania braziliensis/imunologia , Leishmaniose Cutânea/diagnóstico , Proteínas de Protozoários/imunologia , Adulto , Animais , Anticorpos Antiprotozoários/imunologia , Doença de Chagas/parasitologia , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Humanos , Leishmania infantum/imunologia , Leishmaniose Cutânea/parasitologia , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Testes Sorológicos/métodos , Adulto Jovem
15.
Immunobiology ; 222(2): 251-260, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27693018

RESUMO

In the present study, two proteins cloned from Leishmania braziliensis species, a hypothetical protein (LbHyp) and the eukaryotic initiation factor 5a (EiF5a), were evaluated to protect BALB/c mice against L. amazonensis infection. The animals were immunized with the antigens, either separately or in combination, using saponin as an immune adjuvant in both cases. Spleen cells from vaccinated and later infected mice produced significantly higher levels of protein and parasite-specific IFN-γ, IL-12, and GM-CSF, in addition to low levels of IL-4 and IL-10. Evaluating the parasite load by means of a limiting dilution technique and quantitative Real-Time PCR, vaccinated animals presented significant reductions in the parasite load in both infected tissues and organs, as well as lower footpad swelling, when compared to the control (saline and saponin) groups. The best results regarding the protection of the animals were achieved when the combined vaccine was administered into the animals. Protection was associated with an IFN-γ production against parasite antigens, which was mediated by both CD4+ and CD8+ T cells and correlated with antileishmanial nitrite production. In conclusion, data from the present study show that this polyprotein vaccine, which combines two L. braziliensis proteins, can induce protection against L. amazonensis infection.


Assuntos
Antígenos de Protozoários/imunologia , Reações Cruzadas/imunologia , Leishmania braziliensis/imunologia , Leishmania mexicana/imunologia , Vacinas contra Leishmaniose/imunologia , Leishmaniose Cutânea/prevenção & controle , Fatores de Iniciação de Peptídeos/imunologia , Proteínas de Ligação a RNA/imunologia , Animais , Antígenos de Protozoários/química , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Interações Hospedeiro-Parasita/imunologia , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/parasitologia , Camundongos , Carga Parasitária , Fatores de Iniciação de Peptídeos/química , Proteínas de Ligação a RNA/química , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Células Th1/imunologia , Células Th1/metabolismo , Fator de Iniciação de Tradução Eucariótico 5A
16.
Braz. J. Pharm. Sci. (Online) ; 53(1): e16067, 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-839450

RESUMO

ABSTRACT We describe herein the synthesis and evaluation of the antileishmanial activity against promastigote forms of Leishmania amazonensis and cytotoxicity to murine macrophages of a series of 2-chloro-N-arylacetamide derivatives. All compounds were active, except one (compound 3). Compound 5 presented the most promising results, showing good antileishmanial activity (CI50=5.39±0.67 µM) and moderate selectivity (SI=6.36), indicating that further development of this class is worthwhile. Preliminary QSAR studies, although not predictive, furnished some insights on the importance of electronic character of aryl substituent to biological activity, as well as an indirect influence of hydrophobicity on activity.


Assuntos
Animais , Feminino , Ratos , Leishmaniose/tratamento farmacológico , Relação Quantitativa Estrutura-Atividade , Leishmania mexicana/isolamento & purificação , Interações Hidrofóbicas e Hidrofílicas , Macrófagos/citologia
17.
Rev Soc Bras Med Trop ; 49(4): 398-407, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27598624

RESUMO

Visceral leishmaniasis (VL) is one of the most important tropical diseases worldwide. Although chemotherapy has been widely used to treat this disease, problems related to the development of parasite resistance and side effects associated with the compounds used have been noted. Hence, alternative approaches for VL control are desirable. Some methods, such as vector control and culling of infected dogs, are insufficiently effective, with the latter not ethically recommended. The development of vaccines to prevent VL is a feasible and desirable measure for disease control; for example, some vaccines designed to protect dogs against VL have recently been brought to market. These vaccines are based on the combination of parasite fractions or recombinant proteins with adjuvants that are able to induce cellular immune responses; however, their partial efficacy and the absence of a vaccine to protect against human leishmaniasis underline the need for characterization of new vaccine candidates. This review presents recent advances in control measures for VL based on vaccine development, describing extensively studied antigens, as well as new antigenic proteins recently identified using immuno-proteomic techniques.


Assuntos
Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Leishmania/imunologia , Leishmaniose Visceral/prevenção & controle , Vacinas Protozoárias/imunologia , Animais , Cães , Humanos , Leishmania/classificação , Proteínas de Protozoários/imunologia
18.
Rev. Soc. Bras. Med. Trop ; 49(4): 398-407, July-Aug. 2016. tab, graf
Artigo em Inglês | LILACS | ID: lil-792794

RESUMO

Abstract: Visceral leishmaniasis (VL) is one of the most important tropical diseases worldwide. Although chemotherapy has been widely used to treat this disease, problems related to the development of parasite resistance and side effects associated with the compounds used have been noted. Hence, alternative approaches for VL control are desirable. Some methods, such as vector control and culling of infected dogs, are insufficiently effective, with the latter not ethically recommended. The development of vaccines to prevent VL is a feasible and desirable measure for disease control; for example, some vaccines designed to protect dogs against VL have recently been brought to market. These vaccines are based on the combination of parasite fractions or recombinant proteins with adjuvants that are able to induce cellular immune responses; however, their partial efficacy and the absence of a vaccine to protect against human leishmaniasis underline the need for characterization of new vaccine candidates. This review presents recent advances in control measures for VL based on vaccine development, describing extensively studied antigens, as well as new antigenic proteins recently identified using immuno-proteomic techniques.


Assuntos
Humanos , Animais , Cães , Anticorpos Antiprotozoários/imunologia , Vacinas Protozoárias/imunologia , Leishmania/imunologia , Leishmaniose Visceral/prevenção & controle , Antígenos de Protozoários/imunologia , Proteínas de Protozoários/imunologia , Leishmania/classificação
19.
Parasitol Int ; 65(6 Pt A): 728-736, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27425599

RESUMO

New therapeutics are urgently needed to treat visceral leishmaniasis (VL). Due to the fact that drug discovery is a long and expensive process, the development of delivery systems to carry old and toxic drugs could be considered, as well as the evaluation of new molecules that have already shown to present biological activity. In this context, the present study evaluated the in vitro and in vivo antileishmanial activity of an 8-hydroxyquinoline (8-HQN)-containing polymeric micelle (8-HQN/M) system against Leishmania infantum, the main causative agent of VL in the Americas. The experimental strategy used was based on the evaluation of the parasite load by a limiting-dilution technique in the spleen, liver, bone marrow and draining lymph nodes of the infected and treated animals, as well as by a quantitative PCR (qPCR) technique to also assess the splenic parasite load. The immune response developed was evaluated by the production of IFN-γ, IL-4, IL-10, IL-12 and GM-CSF cytokines, as well as by antileishmanial nitrite dosage and antibodies production. Hepatic and renal enzymes were also investigated to verify cellular injury as a result of treatments toxicity. In the results, 8-HQN/M-treated mice, when compared to the other groups: saline, free amphotericin B (AmpB, as a drug control), 8-HQN and B-8-HQN/M (as a micelle control) showed more significant reductions in their parasite burden in all evaluated organs. These animals also showed an antileishmanial Th1 immunity, which was represented by high levels of IFN-γ, IL-12, GM-CSF and nitrite, associated with a low production of IL-4 and IL-10 and anti-Leishmania IgG1 isotype antibodies. In addition, any hepatic or renal damage was found in these treated animals. In conclusion, 8-HQN/M was effective in treating L. infantum-infected BALB/c mice, and can be considered alone, or combined with other drugs, as an alternative treatment for VL.


Assuntos
Antiparasitários/uso terapêutico , Portadores de Fármacos/uso terapêutico , Leishmania infantum/efeitos dos fármacos , Leishmaniose Visceral/tratamento farmacológico , Oxiquinolina/uso terapêutico , Anfotericina B/uso terapêutico , Animais , Anticorpos Antiprotozoários/sangue , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/biossíntese , Imunoglobulina G/sangue , Interferon gama/biossíntese , Interleucina-10/biossíntese , Interleucina-12/biossíntese , Interleucina-4/biossíntese , Leishmania infantum/imunologia , Leishmaniose Visceral/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Micelas , Carga Parasitária
20.
Parasitol Res ; 115(11): 4083-4095, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27365053

RESUMO

The current treatment of leishmaniasis has been hampered due to the high toxicity of the available drugs and long duration protocols, which often lead to its abandonment. In the present study, a poloxamer 407-based delivery system was developed, and a molecule, 8-hydroxyquinoline (8-HQN), was incorporated with it, leading to an 8-HQN/micelle (8-HQN/M) composition. Assays were performed to evaluate the in vitro antileishmanial activity of 8-HQN/M against Leishmania amazonensis stationary promastigotes. The cytotoxicity in murine macrophages and in human red cells, as well as the efficacy of the treatment in macrophages infected by parasites, was also assessed. This product was also evaluated for the treatment of murine tegumentary leishmaniasis, using L. amazonensis-infected BALB/c mice. To evaluate the in vivo efficacy of the treatment, the average lesion diameter (area) in the infected tissue, as well as the parasite load at the site of infection (skin), spleen, liver and draining lymph nodes were examined. Non-incorporated micelle (B-8-HQN/M) and the free molecule (8-HQN) were used as controls, besides animals that received only saline. The parasite burden was evaluated by limiting dilution and quantitative real-time PCR (qPCR) techniques, and immunological parameters associated with the treatments were also investigated. In the results, the 8-HQN/M group, when compared to the others, presented more significant reductions in the average lesion diameter and in the parasite burden in the skin and all evaluated organs. These animals also showed significantly higher levels of parasite-specific IFN-γ, IL-12, and GM-CSF, associated with low levels of IL-4 and IL-10, when compared to the saline, 8-HQN/M, and B-8-HQN groups. A predominant IL-12-driven IFN-γ production, against parasite proteins, mainly produced by CD4+ T cells, was observed in the treated animals, post-infection. In conclusion, 8-HQN/M was highly effective in treating L. amazonensis-infected BALB/c mice and can be considered alone, or combined with other drugs, as an alternative treatment for tegumentary leishmaniasis. Graphical Abstract Therapeutic scheme and immunological and parasitological parameters developed in the present study.


Assuntos
Leishmania mexicana/efeitos dos fármacos , Leishmaniose Cutânea/tratamento farmacológico , Oxiquinolina/uso terapêutico , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Eritrócitos/parasitologia , Feminino , Humanos , Leishmaniose Cutânea/parasitologia , Fígado/parasitologia , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Micelas , Oxiquinolina/administração & dosagem , Carga Parasitária , Polímeros , Baço/parasitologia , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA