Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Gastroenterol Hepatol ; 39(9): 1885-1894, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38967213

RESUMO

BACKGROUND AND AIM: Inflammatory bowel disease is challenging to diagnose. Fecal biomarkers offer noninvasive solutions. The renin-angiotensin-aldosterone system is implicated in intestinal inflammation. Angiotensin-converting enzyme (ACE) and angiotensin-converting enzyme 2 (ACE2) regulate its activity, but conflicting findings on these enzymes in colitis require further investigation. We aimed to assess ACE and ACE2 presence and activities in the feces, serum, and colon of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced rats. METHODS: Colitis was induced in male rats by rectal instillation of a 21% ethanolic TNBS solution. After rats' sacrifice, colonic portions, serum, and feces were collected. ACE and ACE2 presence in the feces was analyzed by western Blot, and colonic and serum enzymes' concentrations were quantified using ELISA kits. ACE activity was assessed using Hippuryl-His-Leu and Z-Phe-His-Leu as substrates. ACE2 activity was assessed using Mca-APK (Dnp) as a substrate in the presence and absence of DX600 (ACE2 inhibitor). RESULTS: An ACE isoform of ~70 kDa was found only in the feces of TNBS-induced rats. ACE concentration was higher than that of ACE2 in the serum and the inflamed colon. ACE N-domain activity was higher than that of the C-domain in all matrices. ACE2 activity was higher in the feces of TNBS-induced animals compared to controls. CONCLUSION: A 70 kDa ACE isoform only detected in the feces of TNBS-induced rats may have translational relevance. ACE N-domain seems to play a significant role in regulating colonic lesions. Further research using human samples is necessary to validate these findings.


Assuntos
Enzima de Conversão de Angiotensina 2 , Colite , Modelos Animais de Doenças , Fezes , Peptidil Dipeptidase A , Ácido Trinitrobenzenossulfônico , Animais , Masculino , Enzima de Conversão de Angiotensina 2/metabolismo , Peptidil Dipeptidase A/metabolismo , Peptidil Dipeptidase A/sangue , Colite/induzido quimicamente , Colite/metabolismo , Colite/enzimologia , Fezes/química , Colo/metabolismo , Colo/enzimologia , Biomarcadores/sangue , Biomarcadores/metabolismo , Ratos , Ratos Sprague-Dawley
2.
Inflammation ; 47(1): 264-284, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37833616

RESUMO

Doxorubicin (DOX) is a topoisomerase II inhibitor used in cancer therapy. Despite its efficacy, DOX causes serious adverse effects, such as short- and long-term cardiotoxicity. This work aimed to assess the short- and long-term cardiotoxicity of DOX and the role of inflammation and antioxidant defenses on that cardiotoxicity in a mice model. Adult CD-1 male mice received a cumulative dose of 9.0 mg/kg of DOX (2 biweekly intraperitoneal injections (ip), for 3 weeks). One week (1W) or 5 months (5M) after the last DOX administration, the heart was collected. One week after DOX, a significant increase in p62, tumor necrosis factor receptor (TNFR) 2, glutathione peroxidase 1, catalase, inducible nitric oxide synthase (iNOS) cardiac expression, and a trend towards an increase in interleukin (IL)-6, TNFR1, and B-cell lymphoma 2 associated X (Bax) expression was observed. Moreover, DOX induced a decrease on nuclear factor erythroid-2 related factor 2 (Nrf2) cardiac expression. In both 1W and 5M, DOX led to a high density of infiltrating M1 macrophages, but only the 1W-DOX group had a significantly higher number of nuclear factor κB (NF-κB) p65 immunopositive cells. As late effects (5M), an increase in Nrf2, myeloperoxidase, IL-33, tumor necrosis factor-α (TNF-α), superoxide dismutase 2 (SOD2) expression, and a trend towards increased catalase expression were observed. Moreover, B-cell lymphoma 2 (Bcl-2), cyclooxygenase-2 (COX-2), and carbonylated proteins expression decreased, and a trend towards decreased p38 mitogen-activated protein kinase (MAPK) expression were seen. Our study demonstrated that DOX induces adverse outcome pathways related to inflammation and oxidative stress, although activating different time-dependent response mechanisms.


Assuntos
Cardiotoxicidade , Fator 2 Relacionado a NF-E2 , Camundongos , Masculino , Animais , Cardiotoxicidade/etiologia , Cardiotoxicidade/metabolismo , Cardiotoxicidade/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Catalase/metabolismo , Cardio-Oncologia , Doxorrubicina/efeitos adversos , Estresse Oxidativo , Interleucina-6/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Inflamação/tratamento farmacológico , Apoptose
3.
Arch Toxicol ; 97(12): 3163-3177, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37676301

RESUMO

Doxorubicin (DOX) is a potent chemotherapeutic agent used against several cancer types. However, due to its cardiotoxic adverse effects, the use of this drug may be also life-threatening. Although most cancer patients are elderly, they are poorly represented and evaluated in pre-clinical and clinical studies. Considering this, the present work aims to evaluate inflammation and oxidative stress as the main mechanisms of DOX-induced cardiotoxicity, in an innovative approach using an experimental model constituted of elderly animals treated with a clinically relevant human cumulative dose of DOX. Elderly (18-20 months) CD-1 male mice received biweekly DOX administrations, for 3 weeks, to reach a cumulative dose of 9.0 mg/kg. One week (1W) or two months (2 M) after the last DOX administration, the heart was collected to determine both drug's short and longer cardiac adverse effects. The obtained results showed that DOX causes cardiac histological damage and fibrosis at both time points. In the 1W-DOX group, the number of nuclear factor kappa B (NF-κB) p65 immunopositive cells increased and a trend toward increased NF-κB p65 expression was seen. An increase of inducible nitric oxide synthase (iNOS) and interleukin (IL)-33 and a trend toward increased IL-6 and B-cell lymphoma-2-associated X (Bax) expression were seen after DOX. In the same group, a decrease in IL-1ß, p62, and microtubule-associated protein 1A/1B-light chain 3 (LC3)-I, p38 mitogen-activated protein kinase (MAPK) expression was observed. Contrariwise, the animals sacrificed 2 M after DOX showed a significant increase in glutathione peroxidase 1 and Bax expression with persistent cardiac damage and fibrosis, while carbonylated proteins, erythroid-2-related factor 2 (Nrf2), NF-κB p65, myeloperoxidase, LC3-I, and LC3-II expression decreased. In conclusion, our study demonstrated that in an elderly mouse population, DOX induces cardiac inflammation, autophagy, and apoptosis in the heart in the short term. When kept for a longer period, oxidative-stress-linked pathways remained altered, as well as autophagy markers and tissue damage after DOX treatment, emphasizing the need for continuous post-treatment cardiac monitoring.


Assuntos
Antioxidantes , Neoplasias , Animais , Masculino , Camundongos , Antioxidantes/metabolismo , Apoptose , Proteína X Associada a bcl-2/metabolismo , Cardiotoxicidade/etiologia , Doxorrubicina/farmacologia , Fibrose , Inflamação/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Transdução de Sinais
4.
Lab Anim ; : 236772231194389, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37712834

RESUMO

Voluntary oral drug administration using sweet substances promotes rodents' therapeutic compliance while reducing stress induced by forced drug administration. We aimed to test whether rats would willingly eat strawberry jam or condensed milk from a syringe, and which one they would prefer. Our results show that rats prefer condensed milk, demonstrating its potential as a vehicle for the voluntary oral administration of drugs in experimental protocols.

5.
Fundam Clin Pharmacol ; 37(6): 1139-1152, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37394277

RESUMO

BACKGROUND: The renin-angiotensin system (RAS) has been associated with inflammatory bowel disease (IBD), supporting translational relevance of RAS blockers. Comparability of study design/outcomes is fundamental for data analysis/discussion. OBJECTIVES: We aimed at evaluating the heterogeneity among protocols and outcomes to study the effect of angiotensin-converting enzyme inhibitors or angiotensin receptor blockers in IBD. METHODS: This study was performed and reported in accordance with the Cochrane recommendations and PRISMA (PROSPERO-CRD42022323853). Systematic searches were performed in PubMed, Scopus and Web of Science. Studies that met the inclusion criteria were selected. Quality assessment of the studies was done with the SYRCLES's risk of bias tools for animal studies. RESULTS: Thirty-five pre-clinical studies and six clinical studies were included. Chemical induction of colitis was the most used model, but variable doses of the induction agent were reported. All studies reported at least a disease activity index, a macroscopic score, or a histologic assessment, but these scores were methodologically heterogeneous and reported for different characteristics. Great heterogeneity was also found in drug interventions. Inflammatory markers assessed as outcomes were different across studies. CONCLUSION: Lack of standardization of protocols and outcomes among studies threatens the evidence on how RAS blockers influence IBD outcomes.


Assuntos
Doenças Inflamatórias Intestinais , Sistema Renina-Angiotensina , Humanos , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Antagonistas de Receptores de Angiotensina/farmacologia , Antagonistas de Receptores de Angiotensina/uso terapêutico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Revisões Sistemáticas como Assunto
6.
Biomolecules ; 13(6)2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37371499

RESUMO

Doxorubicin (DOX) and mitoxantrone (MTX) are classical chemotherapeutic agents used in cancer that induce similar clinical cardiotoxic effects, although it is not clear if they share similar underlying molecular mechanisms. We aimed to assess the effects of DOX and MTX on the cardiac remodeling, focusing mainly on metabolism and autophagy. Adult male CD-1 mice received pharmacologically relevant cumulative doses of DOX (18 mg/kg) and MTX (6 mg/kg). Both DOX and MTX disturbed cardiac metabolism, decreasing glycolysis, and increasing the dependency on fatty acids (FA) oxidation, namely, through decreased AMP-activated protein kinase (AMPK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) content and decreased free carnitine (C0) and increased acetylcarnitine (C2) concentration. Additionally, DOX heavily influenced glycolysis, oxidative metabolism, and amino acids turnover by exclusively decreasing phosphofructokinase (PFKM) and electron transfer flavoprotein-ubiquinone oxidoreductase (ETFDH) content, and the concentration of several amino acids. Conversely, both drugs downregulated autophagy given by the decreased content of autophagy protein 5 (ATG5) and microtubule-associated protein light chain 3 (LC3B), with MTX having also an impact on Beclin1. These results emphasize that DOX and MTX modulate cardiac remodeling differently, despite their clinical similarities, which is of paramount importance for future treatments.


Assuntos
Antineoplásicos , Mitoxantrona , Masculino , Camundongos , Animais , Mitoxantrona/farmacologia , Mitoxantrona/metabolismo , Remodelação Ventricular , Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Doxorrubicina/metabolismo , Autofagia , Aminoácidos/metabolismo , Miócitos Cardíacos/metabolismo , Apoptose , Estresse Oxidativo
7.
Neurogastroenterol Motil ; 35(9): e14598, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37052403

RESUMO

BACKGROUND: Angiotensin-converting enzyme (ACE) and ACE2 are two major enzymes of the renin-angiotensin-aldosterone system (RAAS), which control the formation/degradation of angiotensin (Ang) II and Ang1-7, regulating their opposite effects. We aimed at evaluating the catalytic activity of ACE and ACE2 in the intestinal content and corresponding intestinal tissue along the gut of Wistar Han rats. METHODS: Portions of the ileum, cecum, proximal colon, and distal colon, and the corresponding intestinal content were collected from Wistar Han rats. Enzyme activity was evaluated by fluorometric assays using different substrates: Hippuryl-His-Leu for ACE-C-domain, Z-Phe-His-Leu for ACE-N-domain, and Mca-APK(Dnp) for ACE2. ACE and ACE2 concentration was assessed by ELISA. Ratios concerning concentrations and activities were calculated to evaluate the balance of the RAAS. Statistical analysis was performed using Friedman test followed by Dunn's multiple comparisons test or Wilcoxon matched-pairs test whenever needed. KEY RESULTS: ACE and ACE2 are catalytically active in the intestinal content along the rat gut. The ACE N-domain shows higher activity than the C-domain both in the intestinal content and in the intestinal tissue. ACE and ACE2 are globally more active in the intestinal content than in the corresponding intestinal tissue. There was a distal-to-proximal prevalence of ACE2 over ACE in the intestinal tissue. CONCLUSIONS & INFERENCES: This work is the first to report the presence of catalytically active ACE and ACE2 in the rat intestinal content, supporting future research on the regulatory role of the intestinal RAAS on gut function and a putative link to the microbiome.


Assuntos
Enzima de Conversão de Angiotensina 2 , Hormônios Peptídicos , Animais , Ratos , Angiotensina II , Fezes , Conteúdo Gastrointestinal , Ratos Wistar , Sistema Renina-Angiotensina
8.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36362021

RESUMO

Diabetes mellitus (DM) is a chronic progressive metabolic disorder associated with several gastrointestinal complications, affecting up to 75% of patients. Knowing that Angiotensin II (AngII) also regulates intestinal contraction, we decided to evaluate changes in ileum and colon histomorphometry and AngII reactivity in a rat model of DM. Streptozotocin (STZ, 55 mg/kg) was administered to induce DM to 24 adult male Wistar rats. Diabetic rats displayed all the characteristic signs of type 1 DM (T1DM) and fecal excretion increased about 4-fold over 14 days, while the excretion of controls remained unaltered. Compared to controls, diabetic ileum and colon presented an increase in both macroscopic (length, perimeter and weight) and microscopic (muscular wall thickness) parameters. Functionally, AngII-induced smooth muscle contraction was lower in diabetic rats, except in the distal colon. These differences in the contractile response to AngII may result from an imbalance between AngII type 1 (antagonized by candesartan, 10 nM) and type 2 receptors activation (antagonized by PD123319, 100 nM). Taken together, these results indicate that an early and refined STZ-induced T1DM rat model already shows structural remodelling of the gut wall and decreased contractile response to AngII, findings that may help to explain diabetic dysmotility.


Assuntos
Angiotensina II , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Animais , Masculino , Ratos , Angiotensina II/farmacologia , Angiotensina II/fisiologia , Colo/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/complicações , Íleo/metabolismo , Ratos Wistar , Estreptozocina/farmacologia
9.
Arch Toxicol ; 96(2): 653-671, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35088106

RESUMO

Cyclophosphamide is a widely used anticancer and immunosuppressive prodrug that unfortunately causes severe adverse effects, including cardiotoxicity. Although the exact cardiotoxic mechanisms are not completely understood, a link between cyclophosphamide's pharmacologically active metabolites, namely 4-hydroxycyclophosphamide and acrolein, and the toxicity observed after the administration of high doses of the prodrug is likely. Therefore, the objective of this study is to shed light on the cardiotoxic mechanisms of cyclophosphamide and its main biotransformation products, through classic and metabolomics studies. Human cardiac proliferative and differentiated AC16 cells were exposed to several concentrations of the three compounds, determining their basic cytotoxic profile and preparing the next study, using subtoxic and toxic concentrations for morphological and biochemical studies. Finally, metabolomics studies were applied to cardiac cells exposed to subtoxic concentrations of the aforementioned compounds to determine early markers of damage. The cytotoxicity, morphological and biochemical assays showed that 4-hydroxycyclophosphamide and acrolein induced marked cardiotoxicity at µM concentrations (lower than 5 µM), being significantly lower than the ones observed for cyclophosphamide (higher than 2500 µM). Acrolein led to increased levels of ATP and total glutathione on proliferative cells at 25 µM, while no meaningful changes were observed in differentiated cells. Higher levels of carbohydrates and decreased levels of fatty acids and monoacylglycerols indicated a metabolic cardiac shift after exposure to cyclophosphamide's metabolites, as well as a compromise of precursor amino acids used in the synthesis of glutathione, seen in proliferative cells' metabolome. Overall, differences in cytotoxic mechanisms were observed for the two different cellular states used and for the three molecules, which should be taken into consideration in the study of cyclophosphamide cardiotoxic mechanisms.


Assuntos
Antineoplásicos/toxicidade , Cardiotoxicidade/etiologia , Ciclofosfamida/toxicidade , Miócitos Cardíacos/efeitos dos fármacos , Acroleína/toxicidade , Antineoplásicos/administração & dosagem , Antineoplásicos/metabolismo , Cardiotoxicidade/fisiopatologia , Linhagem Celular , Ciclofosfamida/administração & dosagem , Ciclofosfamida/análogos & derivados , Ciclofosfamida/metabolismo , Relação Dose-Resposta a Droga , Humanos , Imunossupressores/administração & dosagem , Imunossupressores/metabolismo , Imunossupressores/toxicidade , Metabolômica , Miócitos Cardíacos/patologia
10.
Biomolecules ; 11(11)2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34827723

RESUMO

Doxorubicin (DOX) is a topoisomerase II inhibitor commonly used in the treatment of several types of cancer. Despite its efficacy, DOX can potentially cause fatal adverse effects, like cardiotoxicity. This work aimed to assess the role of inflammation in DOX-treated infant and adult mice and its possible link to underlying cardiotoxicity. Two groups of CD-1 male mice of different ages (infants or adults) were subjected to biweekly DOX administrations, to reach a cumulative dose of 18.0 mg/kg, which corresponds approximately in humans to 100.6 mg/m2 for infants and 108.9 mg/m2 for adults a clinically relevant dose in humans. The classic plasmatic markers of cardiotoxicity increased, and that damage was confirmed by histopathological findings in both groups, although it was higher in adults. Moreover, in DOX-treated adults, an increase of cardiac fibrosis was observed, which was accompanied by an increase in specific inflammatory parameters, namely, macrophage M1 and nuclear factor kappa B (NF-κB) p65 subunit, with a trend toward increased levels of the tumor necrosis factor receptor 2 (TNFR2). On the other hand, the levels of myeloperoxidase (MPO) and interleukin (IL)-6 significantly decreased in DOX-treated adult animals. In infants, a significant increase in cardiac protein carbonylation and in the levels of nuclear factor erythroid-2 related factor 2 (Nrf2) was observed. In both groups, no differences were found in the levels of tumor necrosis factor (TNF-α), IL-1ß, p38 mitogen-activated protein kinase (p38 MAPK) or NF-κB p52 subunit. In conclusion, using a clinically relevant dose of DOX, our study demonstrated that cardiac effects are associated not only with the intensity of the inflammatory response but also with redox response. Adult mice seemed to be more prone to DOX-induced cardiotoxicity by mechanisms related to inflammation, while infant mice seem to be protected from the damage caused by DOX, possibly by activating such antioxidant defenses as Nrf2.


Assuntos
Cardiotoxicidade , Animais , Doxorrubicina , Camundongos , NF-kappa B , Estresse Oxidativo
11.
Int J Mol Sci ; 22(9)2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-34063607

RESUMO

Angiotensin II (Ang II) regulates colon contraction, acting not only directly on smooth muscle but also indirectly, interfering with myenteric neuromodulation mediated by the activation of AT1 /AT2 receptors. In this article, we aimed to explore which mediators and cells were involved in Ang II-mediated colonic contraction in the TNBS-induced rat model of colitis. The contractile responses to Ang II were evaluated in distinct regions of the colon of control animals or animals with colitis in the absence and presence of different antagonists/inhibitors. Endogenous levels of Ang II in the colon were assessed by ELISA and the number of AT1/AT2 receptors by qPCR. Ang II caused AT1 receptor-mediated colonic contraction that was markedly decreased along the colons of TNBS-induced rats, consistent with reduced AT1 mRNA expression. However, the effect mediated by Ang II is much more intricate, involving (in addition to smooth muscle cells and nerve terminals) ICC and EGC, which communicate by releasing ACh and NO in a complex mechanism that changes colitis, unveiling new therapeutic targets.


Assuntos
Angiotensina II/genética , Colite/genética , Doenças Inflamatórias Intestinais/genética , Sistema Renina-Angiotensina/genética , Antagonistas de Receptores de Angiotensina/farmacologia , Animais , Colite/fisiopatologia , Colo/metabolismo , Colo/patologia , Sistema Nervoso Entérico/metabolismo , Sistema Nervoso Entérico/patologia , Humanos , Doenças Inflamatórias Intestinais/patologia , Células Intersticiais de Cajal/metabolismo , Células Intersticiais de Cajal/patologia , Masculino , Contração Muscular/genética , Contração Muscular/fisiologia , Músculo Liso Vascular/efeitos dos fármacos , Neuroglia/metabolismo , Neuroglia/patologia , Óxido Nítrico/metabolismo , Ratos , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 2 de Angiotensina/genética , Transmissão Sináptica/genética
12.
Pharmaceuticals (Basel) ; 14(6)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073506

RESUMO

Mitoxantrone (MTX) is a pharmaceutical drug used in the treatment of several cancers and refractory multiple sclerosis (MS). Despite its therapeutic value, adverse effects may be severe, namely the frequently reported cardiotoxicity, whose mechanisms need further research. This work aimed to assess if inflammation or oxidative stress-related pathways participate in the cardiotoxicity of MTX, using the mouse as an animal model, at two different age periods (infant or adult mice) using two therapeutic relevant cumulative doses. Histopathology findings showed that MTX caused higher cardiac toxicity in adults. In MTX-treated adults, at the highest dose, noradrenaline cardiac levels decreased, whereas at the lowest cumulative dose, protein carbonylation increased and the expression of nuclear factor kappa B (NF-κB) p65 subunit and of M1 macrophage marker increased. Moreover, MTX-treated adult mice had enhanced expression of NF-κB p52 and tumour necrosis factor (TNF-α), while decreasing interleukin-6 (IL-6). Moreover, while catalase expression significantly increased in both adult and infant mice treated with the lowest MTX cumulative dose, the expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and glutathione peroxidase only significantly increased in infant animals. Nevertheless, the ratio of GAPDH to ATP synthase subunit beta decreased in adult animals. In conclusion, clinically relevant doses of MTX caused dissimilar responses in adult and infant mice, being that inflammation may be an important trigger to MTX-induced cardiotoxicity.

13.
Exp Anim ; 70(2): 245-256, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33536378

RESUMO

Reproducibility in animal research is crucial for its reliance and translational relevance. The 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced model of inflammatory bowel disease (IBD) is widely used but inconsistently and incompletely characterized throughout the literature. This hinders comparisons between studies and influences the low rate of translation of effective preclinical molecules. The purpose of this study was to categorize TNBS-induced colitis, based on macroscopic and microscopic scoring systems, and to identify basic routine parameters that could anticipate those categories. We retrospectively analysed male Wistar Rattus norvegicus (n=28 for the control group and n=87 for the TNBS group) and categorized TNBS-induced colitis in three phenotypes: Mild, Moderate and Severe colitis, as for human IBD. Also, we showed that the time course of food intake and fecal excretion (but not body weight, fluid intake or welfare scores) could foresee those categories. So, routine evaluation of food intake and fecal excretion may guide researchers in planning their experiments, selecting the animals with the severity of colitis that better matches their aims, or applying early humane endpoints to animals that will not be used in the experiments. In conclusion, categorizing TNBS-induced colitis enhances the reproducibility of data gathered with this experimental model and strengths its translational relevance.


Assuntos
Colite/classificação , Doenças Inflamatórias Intestinais/classificação , Ácido Trinitrobenzenossulfônico/efeitos adversos , Animais , Colite/induzido quimicamente , Modelos Animais de Doenças , Humanos , Doenças Inflamatórias Intestinais/induzido quimicamente , Masculino , Ratos , Ratos Wistar , Estudos Retrospectivos
14.
Inflamm Bowel Dis ; 26(12): 1787-1795, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33064147

RESUMO

Angiotensin-converting enzyme 2 (ACE2) has been highlighted for its role as a receptor for SARS-CoV-2, responsible for the current COVID-19 pandemic. This review summarizes current knowledge about ACE2 as a multifunctional protein, focusing on its relevance in inflammatory bowel disease (IBD). As an enzyme, ACE2 may be protective in IBD because it favors the counter-regulatory arm of the renin-angiotensin system or deleterious because it metabolizes other anti-inflammatory/repairing elements. Meanwhile, as a receptor for SARS-CoV-2, the impact of ACE2 expression/activity on infection is still under debate because no direct evidence has been reported and, again, both protective and deleterious pathways are possible. Research has shown that ACE2 regulates the expression of the neutral amino acid transporter B0AT1, controlling tryptophan-associated intestinal inflammation and nutritional status. Finally, intact membrane-bound or shed soluble ACE2 can also trigger integrin signaling, modulating the response to anti-integrin biologic drugs used to treat IBD (such as vedolizumab) and fibrosis, a long-term complication of IBD. As such, future studies on ACE2 expression/activity in IBD can improve monitoring of the disease and explore an alternative pharmacological target.


Assuntos
Enzima de Conversão de Angiotensina 2/fisiologia , Doenças Inflamatórias Intestinais/metabolismo , SARS-CoV-2/fisiologia , Sistemas de Transporte de Aminoácidos Neutros/fisiologia , COVID-19/virologia , Humanos , Doenças Inflamatórias Intestinais/fisiopatologia , Sistema Renina-Angiotensina/fisiologia
16.
Curr Pharm Des ; 26(30): 3733-3747, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32611296

RESUMO

The endothelium has a crucial role in proper hemodynamics. Inflammatory bowel disease (IBD) is mainly a chronic inflammatory condition of the gastrointestinal tract. However, considerable evidence points to high cardiovascular risk in patients with IBD. This review positions the basic mechanisms of endothelial dysfunction in the IBD setting (both clinical and experimental). Furthermore, we review the main effects of drugs used to treat IBD in endothelial (dys)function. Moreover, we leave challenging points for enlarging the therapeutic arsenal for IBD with new or repurposed drugs that target endothelial dysfunction besides inflammation.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Doenças Vasculares , Humanos , Inflamação/tratamento farmacológico , Doenças Inflamatórias Intestinais/tratamento farmacológico
17.
Carbohydr Polym ; 241: 116314, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32507191

RESUMO

The present study reports the fabrication of dissolvable microneedle (MN) patches using pullulan (PL), a water-soluble polysaccharide with excellent film-forming ability, for the transdermal administration of insulin, envisioning the non-invasive treatment of diabetes. PL MNs patches were successfully prepared by micromoulding and revealed good thermal stability (Tdmax = 294 °C) and mechanical properties (>0.15 N needle-1), penetrating skin up to 381 µm depth, as revealed by in vitro skin tests. After application into human abdominal skin in vitro, the MNs dissolved within 2 h releasing up to 87% of insulin. When stored at 4, 20 and 40 °C for 4 weeks, insulin was able to retain its secondary structure, as shown by circular dichroism spectropolarimetry. The prepared PL MNs were non-cytotoxic towards human keratinocytes, being suitable for skin application. These findings suggest that PL MNs have potential to deliver insulin transdermally, thus avoiding its subcutaneous administration.


Assuntos
Sistemas de Liberação de Medicamentos/instrumentação , Glucanos/química , Insulina/administração & dosagem , Agulhas , Adesivo Transdérmico , Administração Cutânea , Diabetes Mellitus/tratamento farmacológico , Células HaCaT , Humanos , Hipoglicemiantes/administração & dosagem
18.
Toxicol Appl Pharmacol ; 386: 114832, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31756430

RESUMO

In vitro studies showed that 1-(propan-2-ylamino)-4-propoxy-9H-thioxanthen-9-one (TX5) increases P-glycoprotein (P-gp) expression and activity in Caco-2 cells, preventing xenobiotic toxicity. The present study aimed at investigating TX5 effects on P-gp expression/activity using Wistar Han rats: a) in vivo, evaluating intestinal P-gp activity; b) ex vivo, evaluating P-gp expression in ileum brush border membranes (BBM) and P-gp activity in everted intestinal sacs; c) ex vivo, evaluating P-gp activity in everted intestinal sacs of the distal and proximal ileum. TX5 (30 mg/kg, b.w.), gavage, activated P-gp in vivo, given the significant decrease in the AUC of digoxin (0.25 mg/kg, b.w.). The efflux of rhodamine 123 (300 µM), a P-gp fluorescent substrate, significantly increased in TX5-treated everted sacs from the distal portion of the rat ileum, when P-gp activity was evaluated in the presence of TX5 (20 µM), an effect abolished by the P-gp inhibitor verapamil (100 µM). No increases on P-gp expression or activity were found in TX5-treated BBM of the distal ileum and everted distal sacs, respectively, 24 h after TX5 (10 mg/kg, b.w.) administration. In vivo, no differences were found on digoxin portal concentration between control (digoxin 0.025 mg/kg, b.w., intraduodenal) and TX5-treated (digoxin+TX5 20 µM, intraduodenal) rats. The observed discrepancies in digoxin results can be related to differences in TX5 dose administered and used methodologies. Thus, the results show that TX5 activates P-gp at the distal portion of the rat ileum, and, at the higher dose tested (30 mg/kg, b.w.), seems to modulate in vivo the AUC of P-gp substrates.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Íleo/efeitos dos fármacos , Tioxantenos/farmacologia , Animais , Western Blotting , Íleo/metabolismo , Masculino , Microvilosidades/efeitos dos fármacos , Microvilosidades/metabolismo , Ratos , Ratos Wistar
19.
EXCLI J ; 18: 697-722, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31611753

RESUMO

P-glycoprotein (P-gp) is an ATP-binding cassette transporter involved in the efflux of numerous compounds that influences the pharmacokinetics of xenobiotics. It reduces intestinal absorption and exposure of target cells to toxicity. Thioxanthones are compounds able to induce and/or activate P-gp in vitro. Particularly, 1-(propan-2-ylamino)-4-propoxy-9H-thioxanthen-9-one (TX5) behaves as a P-gp inducer and activator in vitro. The aims of this study were: i) to perform a histological characterization, by testing a single high dose of TX5 [30 mg/kg, body weight (b.w.), gavage], administered to Wistar Han rats, 24 hours after administration; and ii) to perform both a complete histological characterization and a preliminary safety evaluation, in distinct target organs, 24 hours after administration of a single lower dose of TX5 (10 mg/kg, b.w., gavage) to Wistar Han rats. The results showed a relevant histological toxicity for the higher dose of TX5 administered (30 mg/kg, b.w.), manifested by extensive hepatic necrosis and splenic toxicity (parenchyma with hyperemia, increased volume of both white and red pulp, increased follicles marginal zone). Moreover, in the kidneys, a slight hyperemia and tubular edema were observed in TX5-treated animals, as well as an inflammation of the small intestine. On the contrary, for the lower tested dose (10 mg/kg, b.w.), we did not observe any relevant histological toxicity in the evaluated organs. Additionally, no significant differences were found in the ATP levels between TX5-exposed and control animals in any of the evaluated organs, with the exception of the intestine, where ATP levels were significantly higher in TX5-treated rats. Similarly, TX5 caused a significant increase in the ratio GSH/GSSG only in the lungs. TX5 (10 mg/kg, b.w.) did not induce any change in any of the hematological and biochemical circulating evaluated parameters. However, TX5 was able to significantly reduce the activated partial thromboplastin time, without affecting the prothrombin time. The urine biochemical analysis revealed a TX5-mediated increase in both creatinine and sodium. Taken together, our results show that TX5, at a dose of 10 mg/kg, does not induce considerable toxicity in the biological matrices studied. Given this adequate safety profile, TX5 becomes a particularly interesting compound for ex vivo and in vivo studies, regarding the potential for induction and activation of P-gp at the intestinal barrier.

20.
J Biomater Appl ; 33(3): 380-391, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30223730

RESUMO

This study aims the in vivo biological characterization of an innovative minocycline delivery system, based on polymethylmethacrylate bone cement. Bone cements containing 1% or 2.5% (w/w) minocycline were formulated and evaluated through solid-state characterization. Biological evaluation was conducted in vivo, within a rat model, following the subcutaneous and bone tissue implantation, and tissue implantation associated with Staphylococcus aureus is challenging. The assessment of the tissue/biomaterial interaction was conducted by histologic, histomorphometric and microtomographic techniques. Minocycline addition to the composition of the polymethylmethacrylate bone cement did not modify significantly the cement properties. Drug release profile was marked by an initial burst release followed by a low-dosage sustained release. Following the subcutaneous tissue implantation, a reduced immune-inflammatory reaction was verified, with diminished cell recruitment and a thinner fibro-connective capsule formation. Minocycline-releasing cements were found to enhance the bone-to-implant contact and bone tissue formation, following the tibial implantation. Lastly, an effective antibacterial activity was mediated by the implanted cement following the tissue challenging with S. aureus. Kinetic minocycline release profile, attained with the developed polymethylmethacrylate system, modulated adequately the in vivo biological response, lessening the immune-inflammatory activation and enhancing bone tissue formation. Also, an effective in vivo antibacterial activity was established. These findings highlight the adequacy and putative application of the developed system for orthopedic applications.


Assuntos
Antibacterianos/administração & dosagem , Cimentos Ósseos/química , Implantes de Medicamento/química , Minociclina/administração & dosagem , Polimetil Metacrilato/química , Animais , Antibacterianos/farmacocinética , Antibacterianos/uso terapêutico , Sistemas de Liberação de Medicamentos , Masculino , Minociclina/farmacocinética , Minociclina/uso terapêutico , Ratos Wistar , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA