Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 62(10): 4238-4247, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36858964

RESUMO

Microscopic knowledge of the structural, energetic, and electronic properties of scandium fluoride is still incomplete despite the relevance of this material as an intermediate for the manufacturing of Al-Sc alloys. In a work based on first-principles calculations and X-ray spectroscopy, we assess the stability and electronic structure of six computationally predicted ScF3 polymorphs, two of which correspond to experimentally resolved single-crystal phases. In the theoretical analysis based on density functional theory (DFT), we identify similarities among the polymorphs based on their formation energies, charge-density distribution, and electronic properties (band gaps and density of states). We find striking analogies between the results obtained for the low- and high-temperature phases of the material, indirectly confirming that the transition occurring between them mainly consists of a rigid rotation of the lattice. With this knowledge, we examine the X-ray absorption spectra from the Sc and F K-edge contrasting first-principles results obtained from the solution of the Bethe-Salpeter equation on top of all-electron DFT with high-energy-resolution fluorescence detection measurements. Analysis of the computational results sheds light on the electronic origin of the absorption maxima and provides information on the prominent excitonic effects that characterize all spectra. A comparison with measurements confirms that the sample is mainly composed of the high- and low-temperature polymorphs of ScF3. However, some fine details in the experimental results suggest that the probed powder sample may contain defects and/or residual traces of metastable polymorphs.

2.
ACS Appl Mater Interfaces ; 15(6): 8601-8608, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36724080

RESUMO

Alloying Al2O3 with Ga2O3 to form ß-(AlxGa1-x)2O3 opens the door to a large number of new possibilities for the fabrication of devices with tunable properties in many high-performance applications such as optoelectronics, sensing systems, and high-power electronics. Often, the properties of these devices are impacted by defects induced during the growth process. In this work, we uncover the crystal structure of a ß-(Al0.2Ga0.8)2O3/ß-Ga2O3 interface grown by molecular beam epitaxy. In particular, we determine Al coordination and the stability of Al and Ga interstitials and their effect on the electronic structure of the material by means of scanning transmission electron microscopy combined with density functional theory. Al atoms can substitutionally occupy both octahedral and tetrahedral sites. The atomic structure of the ß-(Al0.2Ga0.8)2O3/ß-Ga2O3 interface additionally shows Al and Ga interstitials located between neighboring tetrahedrally coordinated cation sites, whose stability will depend on the number of surrounding Al atoms. The presence of Al atoms near interstitials leads to structural distortions in the lattice and creates interstitial-divacancy complexes that will eventually form deep-level states below the conduction band (Ec) at Ec -1.25 eV, Ec -1.68 eV, Ec -1.78 eV, Ec -1.83 eV, and Ec -1.86 eV for a Ga interstitial surrounded by zero, one, two, three, and four Al atoms, respectively. These findings bring new insight toward the fabrication of tunable ß-(AlxGa1-x)2O3 heterostructure-based devices with controlled electronic properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA