Assuntos
Carcinoma Pulmonar de Células não Pequenas , DNA Tumoral Circulante , Neoplasias Pulmonares , Mutação , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/sangue , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/sangue , Proteínas Proto-Oncogênicas p21(ras)/genética , DNA Tumoral Circulante/genética , DNA Tumoral Circulante/sangue , Piridinas/uso terapêutico , Piperazinas , PirimidinasAssuntos
Carcinoma Pulmonar de Células não Pequenas , DNA Tumoral Circulante , Neoplasias Pulmonares , Mutação , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/sangue , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/sangue , DNA Tumoral Circulante/genética , DNA Tumoral Circulante/sangue , Proteínas Proto-Oncogênicas p21(ras)/genéticaRESUMO
PURPOSE: IDH-mutant glioma is classified as oligodendroglioma or astrocytoma based on 1p19q-codeletion. Whether prognostic factors are similar between these tumor types is not well understood. EXPERIMENTAL DESIGN: Retrospective cohort study. Molecular characterization was performed with targeted next-generation sequencing. Tumor volumes were calculated using semiautomatic 3D segmentation on all pre- and post-operative MRI scans. Overall survival was assessed with the Cox-proportional hazards model. RESULTS: A total of 383 patients with newly diagnosed IDH-mutant glioma were followed up for a median of 7.2 years. Grades 3 and 4 patients had significantly lower Karnofsky performance, with tumors having more contrast enhancement. Patients also received more aggressive postsurgery treatment. Postoperative tumor volume is significantly and independently associated with survival (HR, per cm3 1.19; 95% CI, 1.03-1.39) in IDH-mutant glioma. A separate analysis of oligodendroglioma and astrocytoma showed a significant association of postoperative tumor volume in astrocytoma but not in oligodendroglioma. Higher age and histologic tumor grade were associated with worse survival in patients with oligodendroglioma but not with astrocytoma. CONCLUSIONS: Our data support an initial strategy of extensive resection in patients with oligodendroglioma and astrocytoma. Other important prognostic factors differ between these tumor types, urging researchers and clinicians to keep treating these tumors as separate entities.
Assuntos
Astrocitoma , Neoplasias Encefálicas , Isocitrato Desidrogenase , Mutação , Gradação de Tumores , Oligodendroglioma , Humanos , Feminino , Oligodendroglioma/genética , Oligodendroglioma/patologia , Oligodendroglioma/cirurgia , Oligodendroglioma/mortalidade , Masculino , Astrocitoma/patologia , Astrocitoma/genética , Astrocitoma/cirurgia , Astrocitoma/mortalidade , Astrocitoma/diagnóstico por imagem , Pessoa de Meia-Idade , Prognóstico , Isocitrato Desidrogenase/genética , Adulto , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/diagnóstico , Estudos Retrospectivos , Idoso , Fatores Etários , Imageamento por Ressonância Magnética/métodos , Carga TumoralRESUMO
We describe a 46-year-old patient with an IDH-wildtype diffusely infiltrating atypical teratoid/rhabdoid tumour (AT/RT), SHH-1B molecular subtype. The unusual histology and subsequent diagnosis in an adult patient will be discussed.
Assuntos
Neoplasias Encefálicas , Tumor Rabdoide , Teratoma , Humanos , Tumor Rabdoide/patologia , Tumor Rabdoide/genética , Teratoma/patologia , Teratoma/genética , Pessoa de Meia-Idade , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Masculino , Proteínas Hedgehog/genéticaRESUMO
INTRODUCTION: For patients with KRASG12C-mutated NSCLC who are treated with sotorasib, there is a lack of biomarkers to guide treatment decisions. We therefore investigated the clinical utility of pretreatment and on-treatment circulating tumor DNA (ctDNA) and treatment-emergent alterations on disease progression. METHODS: Patients with KRASG12C-mutated NSCLC treated with sotorasib were prospectively enrolled in our biomarker study (NCT05221372). Plasma samples were collected before sotorasib treatment, at first-response evaluation and at disease progression. The TruSight Oncology 500 panel was used for ctDNA and variant allele frequency analysis. Tumor response and progression-free survival were assessed per Response Evaluation Criteria in Solid Tumors version 1.1. RESULTS: Pretreatment KRASG12C ctDNA was detected in 50 of 66 patients (76%). Patients with detectable KRASG12C had inferior progression-free survival (hazard ratio [HR] 2.13 [95% confidence interval [CI]: 1.06-4.30], p = 0.031) and overall survival (HR 2.61 [95% CI: 1.16-5.91], p = 0.017). At first-response evaluation (n = 40), 29 patients (73%) had a molecular response. Molecular nonresponders had inferior overall survival (HR 3.58 [95% CI: 1.65-7.74], p = 0.00059). The disease control rate was significantly higher in those with a molecular response (97% versus 64%, p = 0.015). KRAS amplifications were identified as recurrent treatment-emergent alterations. CONCLUSIONS: Our data suggest detectable pretreatment KRASG12C ctDNA as a marker for poor prognosis and on-treatment ctDNA clearance as a marker for treatment response. We identified KRAS amplifications as a potential recurring resistance mechanism to sotorasib. Identifying patients with superior prognosis could aid in optimizing time of treatment initiation, and identifying patients at risk of early progression could allow for earlier treatment decisions.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , DNA Tumoral Circulante , Neoplasias Pulmonares , Proteínas Proto-Oncogênicas p21(ras) , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/sangue , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/sangue , DNA Tumoral Circulante/genética , DNA Tumoral Circulante/sangue , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/sangue , Mutação , Piperazinas/uso terapêutico , Estudos Prospectivos , Proteínas Proto-Oncogênicas p21(ras)/genética , Piridinas/uso terapêutico , Pirimidinas/uso terapêuticoRESUMO
BACKGROUND: Identification of tumor-derived variants in circulating tumor DNA (ctDNA) has potential as a sensitive and reliable surrogate for tumor tissue-based routine diagnostic testing. However, variations in pre(analytical) procedures affect the efficiency of ctDNA recovery. Here, an external quality assessment (EQA) was performed to determine the performance of ctDNA mutation detection work flows that are used in current diagnostic settings across laboratories within the Dutch COIN consortium (ctDNA on the road to implementation in The Netherlands). METHODS: Aliquots of 3 high-volume diagnostic leukapheresis (DLA) plasma samples and 3 artificial reference plasma samples with predetermined mutations were distributed among 16 Dutch laboratories. Participating laboratories were requested to perform ctDNA analysis for BRAF exon 15, EGFR exon 18-21, and KRAS exon 2-3 using their regular circulating cell-free DNA (ccfDNA) analysis work flow. Laboratories were assessed based on adherence to the study protocol, overall detection rate, and overall genotyping performance. RESULTS: A broad range of preanalytical conditions (e.g., plasma volume, elution volume, and extraction methods) and analytical methodologies (e.g., droplet digital PCR [ddPCR], small-panel PCR assays, and next-generation sequencing [NGS]) were used. Six laboratories (38%) had a performance score of >0.90; all other laboratories scored between 0.26 and 0.80. Although 13 laboratories (81%) reached a 100% overall detection rate, the therapeutically relevant EGFR p.(S752_I759del) (69%), EGFR p.(N771_H773dup) (50%), and KRAS p.(G12C) (48%) mutations were frequently not genotyped accurately. CONCLUSIONS: Divergent (pre)analytical protocols could lead to discrepant clinical outcomes when using the same plasma samples. Standardization of (pre)analytical work flows can facilitate the implementation of reproducible liquid biopsy testing in the clinical routine.
Assuntos
DNA Tumoral Circulante , Humanos , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , Mutação , Neoplasias/genética , Neoplasias/sangue , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptores ErbB/genética , Receptores ErbB/sangue , Proteínas Proto-Oncogênicas B-raf/genética , Países BaixosRESUMO
PURPOSE: Next generation sequencing (NGS) is an important tool used in clinical practice to obtain the required molecular information for accurate diagnostics of high-grade adult-type diffuse glioma (HGG). Since individual centers use either in-house produced or standardized panels, interlaboratory variation could play a role in the practice of HGG diagnosis and treatment. This study aimed to investigate the current practice in NGS application for both primary and recurrent HGG. METHODS: This nationwide Dutch survey used the expertise of (neuro)pathologists and clinical scientists in molecular pathology (CSMPs) by sending online questionnaires on clinical and technical aspects. Primary outcome was an overview of panel composition in the different centers for diagnostic practice of HGG. Secondary outcomes included practice for recurrent HGG and future perspectives. RESULTS: Out of twelve neuro-oncology centers, the survey was filled out by eleven (neuro)pathologists and seven CSMPs. The composition of the diagnostic NGS panels differed in each center with numbers of genes ranging from 12 to 523. Differences are more pronounced when tests are performed to find therapeutic targets in the case of recurrent disease: about half of the centers test for gene fusions (60%) and tumor mutational burden (40%). CONCLUSION: Current notable interlaboratory variations as illustrated in this study should be reduced in order to refine diagnostics and improve precision oncology. In-house developed tests, standardized panels and routine application of broad gene panels all have their own advantages and disadvantages. Future research would be of interest to study the clinical impact of variation in diagnostic approaches.
Assuntos
Neoplasias Encefálicas , Glioma , Adulto , Humanos , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamento farmacológico , Glioma/diagnóstico , Glioma/genética , Glioma/tratamento farmacológico , Sequenciamento de Nucleotídeos em Larga Escala , Países Baixos , Medicina de PrecisãoRESUMO
Tumor growth models have the potential to model and predict the spatiotemporal evolution of glioma in individual patients. Infiltration of glioma cells is known to be faster along the white matter tracts, and therefore structural magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) can be used to inform the model. However, applying and evaluating growth models in real patient data is challenging. In this work, we propose to formulate the problem of tumor growth as a ranking problem, as opposed to a segmentation problem, and use the average precision (AP) as a performance metric. This enables an evaluation of the spatial pattern that does not require a volume cut-off value. Using the AP metric, we evaluate diffusion-proliferation models informed by structural MRI and DTI, after tumor resection. We applied the models to a unique longitudinal dataset of 14 patients with low-grade glioma (LGG), who received no treatment after surgical resection, to predict the recurrent tumor shape after tumor resection. The diffusion models informed by structural MRI and DTI showed a small but significant increase in predictive performance with respect to homogeneous isotropic diffusion, and the DTI-informed model reached the best predictive performance. We conclude there is a significant improvement in the prediction of the recurrent tumor shape when using a DTI-informed anisotropic diffusion model with respect to istropic diffusion, and that the AP is a suitable metric to evaluate these models. All code and data used in this publication are made publicly available.
Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Imagem de Tensor de Difusão/métodos , Glioma/diagnóstico por imagem , Glioma/cirurgia , Glioma/patologia , Imageamento por Ressonância Magnética , AnisotropiaRESUMO
Colorectal cancer (CRC) colonoscopic surveillance is effective but burdensome. Circulating tumor DNA (ctDNA) analysis has emerged as a promising, minimally invasive tool for disease detection and management. Here, we assessed which ctDNA assay might be most suitable for a ctDNA-based CRC screening/surveillance blood test. In this prospective, proof-of-concept study, patients with colonoscopies for Lynch surveillance or the National Colorectal Cancer screening program were included between 7 July 2019 and 3 June 2022. Blood was drawn, and if advanced neoplasia (adenoma with villous component, high-grade dysplasia, ≥10 mm, or CRC) was detected, it was analyzed for chromosomal copy number variations, single nucleotide variants, and genome-wide methylation (MeD-seq). Outcomes were compared with corresponding patients' tissues and the MeD-seq results of healthy blood donors. Two Lynch carriers and eight screening program patients were included: five with CRC and five with advanced adenomas. cfDNA showed copy number variations and single nucleotide variants in one patient with CRC and liver metastases. Eight patients analyzed with MeD-seq showed clustering of Lynch-associated and sporadic microsatellite instable lesions separate from microsatellite stable lesions, as did healthy blood donors. In conclusion, whereas copy number changes and single nucleotide variants were only detected in one patient, cfDNA methylation profiles could discriminate all microsatellite instable advanced neoplasia, rendering this tool particularly promising for LS surveillance. Larger studies are warranted to validate these findings.
RESUMO
Metastatic disease is linked to TERT promoter mutations in conjunctival melanomas (CM). Both TERT promoter and ATRX mutations are associated with faulty telomere maintenance. This study aimed to determine the prognostic value of ATRX loss in conjunctival melanocytic lesions. Eighty-six conjunctival melanocytic lesions from the Rotterdam Ocular Melanoma Study group were collected. ATRX status and TERT promoter status were determined using immunohistochemical staining and molecular diagnostics, respectively. None of the nevi (n = 16) and primary acquired melanosis (PAM) without atypia (n = 6) showed ATRX loss. ATRX loss was found in 2/5 PAM with atypia without CM and in 8/59 CM. No cases with a TERT promoter mutation (n = 26) showed ATRX loss. Eight/eleven metastatic CM harbored a TERT promoter mutation, two other metastatic CM showed ATRX loss and one metastatic case showed no TERT promoter/ATRX alterations. In conclusion ATRX loss and TERT promoter mutations are only found in (pre)malignant conjunctival melanocytic lesions, with most metastatic cases harboring one of these alterations, suggesting that both alterations are associated with adverse behavior. Similar to TERT promoter mutations, ATRX loss may be used as a diagnostic tool in determining whether a conjunctival melanocytic lesion is prone to having an adverse course.
Assuntos
Neoplasias Ósseas , Neoplasias da Túnica Conjuntiva , Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/genética , Neoplasias da Túnica Conjuntiva/diagnóstico , Neoplasias da Túnica Conjuntiva/genética , Melanócitos , Proteína Nuclear Ligada ao X/genéticaRESUMO
To identify Lynch syndrome (LS) carriers, DNA mismatch repair (MMR) immunohistochemistry (IHC) is performed on colorectal cancers (CRCs). Upon subsequent LS diagnostics, MMR deficiency (MMRd) sometimes remains unexplained (UMMRd). Recently, the importance of complete LS diagnostics to explain UMMRd, involving MMR methylation, germline, and somatic analyses, was stressed. To explore why some MMRd CRCs remain unsolved, we performed a systematic review of the literature and mapped patients with UMMRd diagnosed in our center. A systematic literature search was performed in Ovid Medline, Embase, Web of Science, Cochrane CENTRAL, and Google Scholar for articles on UMMRd CRCs after complete LS diagnostics published until December 15, 2021. Additionally, UMMRd CRCs diagnosed in our center since 1993 were mapped. Of 754 identified articles, 17 were included, covering 74 patients with UMMRd. Five CRCs were microsatellite stable. Upon complete diagnostics, 39 patients had single somatic MMR hits, and six an MMR germline variant of unknown significance (VUS). Ten had somatic pathogenic variants (PVs) in POLD1, MLH3, MSH3, and APC. The remaining 14 patients were the only identifiable cases in the literature without a plausible identified cause of the UMMRd. Of those, nine were suspected to have LS. In our center, complete LS diagnostics in approximately 5,000 CRCs left seven MMRd CRCs unexplained. All had a somatic MMR hit or MMR germline VUS, indicative of a missed second MMR hit. In vitually all patients with UMMRd, complete LS diagnostics suggest MMR gene involvement. Optimizing detection of currently undetectable PVs and VUS interpretation might explain all UMMRd CRCs, considering UMMRd a case closed.
Assuntos
Neoplasias Encefálicas , Neoplasias Colorretais Hereditárias sem Polipose , Neoplasias Colorretais , Síndromes Neoplásicas Hereditárias , Humanos , Neoplasias Colorretais/diagnóstico , Síndromes Neoplásicas Hereditárias/diagnóstico , Neoplasias Colorretais Hereditárias sem Polipose/diagnósticoRESUMO
OBJECTIVES: The landmark ADAURA study recently demonstrated a significant disease-free survival benefit of adjuvant osimertinib in patients with resected EGFR-mutated lung adenocarcinoma. However, data on prevalence rates and stage distribution of EGFR mutations in non-small cell lung cancer in Western populations are limited since upfront EGFR testing in early stage lung adenocarcinoma is not common practice. Here, we present a unique, real-world, unselected cohort of lung adenocarcinoma to aid in providing a rationale for routine testing of early stage lung cancers for EGFR mutations in the West-European population. MATERIAL AND METHODS: We performed routine unbiased testing of all cases, regardless of TNM stage, with targeted next-generation sequencing on 486 lung adenocarcinoma cases between 01- January 2014 and 01 February 2020. Clinical and pathological data, including co-mutations and morphology, were collected. EGFR-mutated cases were compared to KRAS-mutated cases to investigate EGFR-specific characteristics. RESULTS: In total, 53 of 486 lung adenocarcinomas (11%) harboured an EGFR mutation. In early stages (stage 0-IIIA), the prevalence was 13%, versus 9% in stage IIIB-IV. Nine out of 130 (7%) stage IB-IIIA patients fit the ADAURA criteria. Early stage cases harboured more L858R mutations (p = 0.02), fewer exon 20 insertions (p = 0.048), fewer TP53 co-mutations (p = 0.007), and were more frequently never smokers (p = 0.04) compared to late stage cases with EGFR mutations. The KRAS-mutated cases were distributed more evenly across TNM stages compared to the EGFR-mutated cases. CONCLUSION: As (neo-)adjuvant targeted therapy regimes enter the field of lung cancer treatment, molecular analysis of early stage non-small cell lung cancer becomes relevant. Testing for EGFR mutations in early stage lung adenocarcinoma holds a substantial yield in our population, as our number needed to test ratio for adjuvant osimertinib was 14.4. The observed differences between early and late stage disease warrant further analysis to work towards better prognostic stratification and more personalised treatment.
Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Prevalência , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptores ErbB/genética , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , MutaçãoRESUMO
INTRODUCTION: Patient-reported smoking history is frequently used as a stratification factor in NSCLC-directed clinical research. Nevertheless, this classification does not fully reflect the mutational processes in a tumor. Next-generation sequencing can identify mutational signatures associated with tobacco smoking, such as single-base signature 4 and indel-based signature 3. This provides an opportunity to redefine the classification of smoking- and nonsmoking-associated NSCLC on the basis of individual genomic tumor characteristics and could contribute to reducing the lung cancer stigma. METHODS: Whole genome sequencing data and clinical records were obtained from three prospective cohorts of metastatic NSCLC (N = 316). Relative contributions and absolute counts of single-base signature 4 and indel-based signature 3 were combined with relative contributions of age-related signatures to divide the cohort into smoking-associated ("smoking high") and nonsmoking-associated ("smoking low") clusters. RESULTS: The smoking high (n = 169) and smoking low (n = 147) clusters differed considerably in tumor mutational burden, signature contribution, and mutational landscape. This signature-based classification overlapped considerably with smoking history. Yet, 26% of patients with an active smoking history were included in the smoking low cluster, of which 52% harbored an EGFR/ALK/RET/ROS1 alteration, and 4% of patients without smoking history were included in the smoking high cluster. These discordant samples had similar genomic contexts to the rest of their respective cluster. CONCLUSIONS: A substantial subset of metastatic NSCLC is differently classified into smoking- and nonsmoking-associated tumors on the basis of smoking-related mutational signatures than on the basis of smoking history. This signature-based classification more accurately classifies patients on the basis of genome-wide context and should therefore be considered as a stratification factor in clinical research.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas Tirosina Quinases/genética , Estudos Prospectivos , Proteínas Proto-Oncogênicas/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Mutação , Fumar/efeitos adversos , Fumar/genética , Fumar Tabaco/efeitos adversos , Fumar Tabaco/genéticaRESUMO
BACKGROUND: Accurate characterization of glioma is crucial for clinical decision making. A delineation of the tumor is also desirable in the initial decision stages but is time-consuming. Previously, deep learning methods have been developed that can either non-invasively predict the genetic or histological features of glioma, or that can automatically delineate the tumor, but not both tasks at the same time. Here, we present our method that can predict the molecular subtype and grade, while simultaneously providing a delineation of the tumor. METHODS: We developed a single multi-task convolutional neural network that uses the full 3D, structural, preoperative MRI scans to predict the IDH mutation status, the 1p/19q co-deletion status, and the grade of a tumor, while simultaneously segmenting the tumor. We trained our method using a patient cohort containing 1508 glioma patients from 16 institutes. We tested our method on an independent dataset of 240 patients from 13 different institutes. RESULTS: In the independent test set, we achieved an IDH-AUC of 0.90, an 1p/19q co-deletion AUC of 0.85, and a grade AUC of 0.81 (grade II/III/IV). For the tumor delineation, we achieved a mean whole tumor Dice score of 0.84. CONCLUSIONS: We developed a method that non-invasively predicts multiple, clinically relevant features of glioma. Evaluation in an independent dataset shows that the method achieves a high performance and that it generalizes well to the broader clinical population. This first-of-its-kind method opens the door to more generalizable, instead of hyper-specialized, AI methods.
Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioma/diagnóstico por imagem , Glioma/genética , Glioma/patologia , Imageamento por Ressonância Magnética/métodos , Aberrações Cromossômicas , Isocitrato Desidrogenase/genética , Mutação , Gradação de TumoresRESUMO
BACKGROUND: We present a family consisting of a father and his two children with an exceptional phenotype of childhood renal cell carcinoma and brain tumors. Extensive genetic testing revealed two inherited tumor predisposition syndromes in all three family members: Birt-Hogg-Dubé syndrome and Li-Fraumeni syndrome. The corresponding genes (FLCN and TP53) are both located on the short arm of chromosome 17. METHODS: We describe the phenotype and performed single nucleotide polymorphism (SNP)-based loss of heterozygosity (LOH) analysis of the tumors. RESULTS: All examined tumors showed somatic loss of the wild-type alleles of both FLCN and TP53. CONCLUSIONS: We hypothesize that a synergistic effect of both mutations caused the unusual phenotype of childhood renal cell carcinoma in this family. This family emphasizes the importance of further genetic testing if a tumor develops at an unexpected young age in an inherited cancer predisposition syndrome.
Assuntos
Neoplasias Encefálicas , Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Neoplasias Renais/genética , Proteínas Supressoras de Tumor/genética , Predisposição Genética para Doença , Células Germinativas/metabolismo , Células Germinativas/patologia , Proteína Supressora de Tumor p53/genética , Proteínas Proto-Oncogênicas/genéticaRESUMO
BACKGROUND: IDH1/2 wildtype (IDHwt) glioma WHO grade 2 and 3 patients with pTERT mutation and/or EGFR amplification and/orâ +â 7/-10 chromosome gain/loss have a similar overall survival time as IDHwt glioblastoma patients, and are both considered glioblastoma IDHwt according to the WHO 2021 classification. However, differences in seizure onset have been observed. This study aimed to compare the course of epilepsy in the 2 glioblastoma subtypes. METHODS: We analyzed epilepsy data of an existing cohort including IDHwt histologically lower-grade glioma WHO grade 2 and 3 with molecular glioblastoma-like profile (IDHwt hLGG) and IDHwt glioblastoma patients. Primary outcome was the incidence proportion of epilepsy during the disease course. Secondary outcomes included, among others, onset of epilepsy, number of seizure days, and antiepileptic drug (AED) polytherapy. RESULTS: Out of 254 patients, 78% (50/64) IDHwt hLGG and 68% (129/190) IDHwt glioblastoma patients developed epilepsy during the disease (Pâ =â .121). Epilepsy onset before histopathological diagnosis occurred more frequently in IDHwt hLGG compared to IDHwt glioblastoma patients (90% vs 60%, Pâ <â .001), with a significantly longer median time to diagnosis (3.5 vs 1.3 months, Pâ <â .001). Median total seizure days was also longer for IDHwt hLGG patients (7.0 vs 3.0, Pâ =â .005), and they received more often AED polytherapy (32% vs 17%, Pâ =â .028). CONCLUSIONS: Although the incidence proportion of epilepsy during the entire disease course is similar, IDHwt hLGG patients show a significantly higher incidence of epilepsy before diagnosis and a significantly longer median time between first seizure and diagnosis compared to IDHwt glioblastoma patients, indicating a distinct clinical course.
Assuntos
Neoplasias Encefálicas , Epilepsia , Glioblastoma , Glioma , Humanos , Glioblastoma/patologia , Neoplasias Encefálicas/patologia , Glioma/patologia , Mutação , Convulsões , Anticonvulsivantes , Isocitrato Desidrogenase/genéticaRESUMO
PURPOSE: In a post hoc analysis of the CATNON trial (NCT00626990), we explored whether adding temozolomide to radiotherapy improves outcome in patients with IDH1/2 wildtype (wt) anaplastic astrocytomas with molecular features of glioblastoma [redesignated as glioblastoma, isocitrate dehydrogenase-wildtype (IDH-wt) in the 2021 World Health Organization (WHO) classification of central nervous system tumors]. PATIENTS AND METHODS: From the randomized phase III CATNON study examining the addition of adjuvant and concurrent temozolomide to radiotherapy in anaplastic astrocytomas, we selected a subgroup of IDH1/2wt and H3F3Awt tumors with presence of TERT promoter mutations and/or EGFR amplifications and/or combined gain of chromosome 7 and loss of chromosome 10. Molecular abnormalities including MGMT promoter methylation status were determined by next-generation sequencing, DNA methylation profiling, and SNaPshot analysis. RESULTS: Of the 751 patients entered in the CATNON study, 670 had fully molecularly characterized tumors. A total of 159 of these tumors met the WHO 2021 molecular criteria for glioblastoma, IDH-wt. Of these patients, 47 received radiotherapy only and 112 received a combination of radiotherapy and temozolomide. There was no added effect of temozolomide on either overall survival [HR, 1.19; 95% confidence interval (CI), 0.82-1.71] or progression-free survival (HR, 0.87; 95% CI, 0.61-1.24). MGMT promoter methylation was prognostic for overall survival, but was not predictive for outcome to temozolomide treatment either with respect to overall survival or progression-free survival. CONCLUSIONS: In this cohort of patients with glioblastoma, IDH-wt temozolomide treatment did not add benefit beyond that observed from radiotherapy, regardless of MGMT promoter status. These findings require a new well-powered prospective clinical study to explore the efficacy of temozolomide treatment in this patient population.