Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(17): 5342-5350, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38630899

RESUMO

CuInS2 (CIS) quantum dots (QDs) represent an important class of colloidal materials with broad application potential, owing to their low toxicity and unique optical properties. Although coating with a ZnS shell has been identified as a crucial method to enhance optical performance, the occurrence of cation exchange has historically resulted in the unintended formation of Cu-In-Zn-S alloyed QDs, causing detrimental blueshifts in both absorption and photoluminescence (PL) spectral profiles. In this study, we present a facile one-pot synthetic strategy aimed at impeding the cation exchange process and promoting ZnS shell growth on CIS core QDs. The suppression of both electron-phonon interaction and Auger recombination by the rigid ZnS shell results in CIS/ZnS core/shell QDs that exhibit a wide near-infrared (NIR) emission coverage and a remarkable PL quantum yield of 92.1%. This effect boosts the fabrication of high-performance, QD-based NIR light-emitting diodes with the best stability of such materials so far.

2.
Langmuir ; 39(46): 16457-16471, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37946515

RESUMO

Monolayers self-assembled by triphenyleneethynylene (TPE) compounds bearing two terminal alkynyl chains were polymerized by Glaser-Hay (G-H) alkyne coupling at the acetonitrile-HOPG interface. The alkynyl chains extend into the solution due to the monolayer's dense-packed morphology. Reacting substructures that have no morphology-determining roles is a potential strategy for preserving monolayer morphology throughout polymerization. Monolayer G-H reaction kinetics and polymerized monolayer durability were characterized by using mass spectrometry and fluorescence. Fourier transform ion cyclotron resonance (FTICR) mass spectrometry (MS) and time-of-flight (TOF) MS were used to identify TPE-oligomers in the monolayer and to track the monolayer populations of TPE-monomer, -dimer, and -trimer as a function of G-H reaction duration. Comparison of the observed kinetics to a Monte Carlo simulation provided evidence of step-growth polymerization. The durability of polymerized monolayers depended strongly on the length of the alkynyl chains linked by G-H reaction. Polymerized T6y monolayers (O(CH2)3C≡CH alkynyl chains) desorbed minimally during 16-h immersion in 90 °C o-dichlorobenzene (oDCB), whereas polymerized T8y (O(CH2)5C≡CH alkynyl chains) and polymerized T11y (O(CH2)8C≡CH alkynyl chains), desorbed 33 and 60%, respectively, of their TPE units after 4 h in 90 °C oDCB. All the polymerized monolayers are much more durable than unpolymerized monolayers, which desorb quantitatively from HOPG when rinsed with 25 µL of oDCB. Polymerized T6y monolayer is a highly durable anchor that may be adapted to build multilayer structures "permanently" attached to the HOPG surface. The alkynyl chain length dependence may be useful for tuning polymerized TPE monolayer durability for specific applications.

3.
J Am Chem Soc ; 145(40): 21886-21896, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37768875

RESUMO

Developing Type-I core/shell quantum dots is of great importance toward fabricating stable and sustainable photocatalysts. However, the application of Type-I systems has been limited due to the strongly confined photogenerated charges by the energy barrier originating from the wide-bandgap shell material. In this project, we found that through the decoration of Au satellite-type domains on the surface of Type-I CdS/ZnS core/shell quantum dots, such an energy barrier can be effectively overcome and an over 400-fold enhancement of photocatalytic H2 evolution rate was achieved compared to bare CdS/ZnS quantum dots. Transient absorption spectroscopic studies indicated that the charges can be effectively extracted and subsequently transferred to surrounding molecular substrates in a subpicosecond time scale in such hybrid nanocrystals. Based on density functional theory calculations, the ultrafast charge separation rates were ascribed to the formation of intermediate Au2S layer at the semiconductor-metal interface, which can successfully offset the energy confinement introduced by the ZnS shell. Our findings not only provide insightful understandings on charge carrier dynamics in semiconductor-metal heterostructural materials but also pave the way for the future design of quantum dot-based hybrid photocatalytic systems.

4.
Chem Sci ; 13(17): 4874-4883, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35655869

RESUMO

Lead-free halide perovskite nanocrystals (NCs) represent a group of emerging materials which hold promise for various optical and optoelectronic applications. Exploring facile synthetic methods for such materials has been of great interest to not only fundamental research but also technological implementations. Herein, we report a fundamentally new method to access lead-free Bi-based double perovskite (DP) and quadruple perovskite (or layered double perovskite, LDP) NCs based on a post-synthetic transformation reaction of Cs3BiX6 (X = Cl, Br) zero-dimensional (0D) perovskite NCs under mild conditions. The produced NCs show good particle uniformity, high crystallinity, and comparable optical properties to the directly synthesized NCs. The relatively slow kinetics and stop-on-demand feature of the transformation reaction allow real-time composition-structure-property investigations of the reaction, thus elucidating a cation-alloyed intermediate-assisted transformation mechanism. Our study presented here demonstrates for the first time that post-synthetic transformation of 0D perovskite NCs can serve as a new route towards the synthesis of high-quality lead-free perovskite NCs, and provides valuable insights into the crystal structures, excitonic properties and their relationships of perovskite NCs.

5.
J Phys Chem Lett ; 12(30): 7180-7193, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34309389

RESUMO

Quantum dots (QDs) with tunable photo-optical properties and colloidal nature are ideal for a wide range of photocatalytic reactions. In particular, QD photocatalysts for organic transformations can provide new and effective synthetic routes to high value-added molecules under mild conditions. In this Perspective, we discuss the advances of employing QDs for visible-light-driven organic transformations categorized into net reductive reactions, net oxidative reactions, and redox neutral reactions. We then provide our outlook for potential future directions in the field: nanostructure engineering to improve charge separation efficiencies, ligand shell engineering to optimize overall catalyst performance, in situ comprehensive studies to delineate underlying reaction mechanisms, and laboratory automation with the assistance of modern computing techniques to revolutionize the reaction optimization process.

6.
Nanoscale ; 12(45): 23191-23199, 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33201164

RESUMO

Lead-free perovskites and their analogues have been extensively studied as a class of next-generation luminescent and optoelectronic materials. Herein, we report the synthesis of new colloidal Cs4M(ii)Bi2Cl12 (M(ii) = Cd, Mn) nanocrystals (NCs) with unique luminescence properties. The obtained Cs4M(ii)Bi2Cl12 NCs show a layered double perovskite (LDP) crystal structure with good particle stability. Density functional theory calculations show that both samples exhibit a wide, direct bandgap feature. Remarkably, the strong Mn-Mn coupling effect of the Cs4M(ii)Bi2Cl12 NCs results in an ultra-short Mn photoluminescence (PL) decay lifetime of around 10 µs, around two orders of magnitude faster than commonly observed Mn2+ dopant emission in NCs. Diluting the Mn2+ ion concentration through forming Cs4(Cd1-xMnx)Bi2Cl12 (0 < x < 1) alloyed LDP NCs leads to prolonged PL lifetimes and enhanced PL quantum yields. Our study provides the first synthetic example of Bi-based LDP colloidal NCs with potential for serving as a new category of stable lead-free perovskite-type materials for various applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA