Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Vis Comput Graph ; 29(8): 3535-3549, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35358048

RESUMO

Human path-planning operates differently from deterministic AI-based path-planning algorithms due to the decay and distortion in a human's spatial memory and the lack of complete scene knowledge. Here, we present a cognitive model of path-planning that simulates human-like learning of unfamiliar environments, supports systematic degradation in spatial memory, and distorts spatial recall during path-planning. We propose a Dynamic Hierarchical Cognitive Graph (DHCG) representation to encode the environment structure by incorporating two critical spatial memory biases during exploration: categorical adjustment and sequence order effect. We then extend the "Fine-To-Coarse" (FTC), the most prevalent path-planning heuristic, to incorporate spatial uncertainty during recall through the DHCG. We conducted a lab-based Virtual Reality (VR) experiment to validate the proposed cognitive path-planning model and made three observations: (1) a statistically significant impact of sequence order effect on participants' route-choices, (2) approximately three hierarchical levels in the DHCG according to participants' recall data, and (3) similar trajectories and significantly similar wayfinding performances between participants and simulated cognitive agents on identical path-planning tasks. Furthermore, we performed two detailed simulation experiments with different FTC variants on a Manhattan-style grid. Experimental results demonstrate that the proposed cognitive path-planning model successfully produces human-like paths and can capture human wayfinding's complex and dynamic nature, which traditional AI-based path-planning algorithms cannot capture.


Assuntos
Gráficos por Computador , Memória Espacial , Humanos , Rememoração Mental , Simulação por Computador , Cognição
2.
Materials (Basel) ; 14(8)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924189

RESUMO

Total knee replacement (TKR) is a remarkable achievement in biomedical science that enhances human life. However, human beings still suffer from knee-joint-related problems such as aseptic loosening caused by excessive wear between articular surfaces, stress-shielding of the bone by prosthesis, and soft tissue development in the interface of bone and implant due to inappropriate selection of TKR material. The choice of most suitable materials for the femoral component of TKR is a critical decision; therefore, in this research paper, a hybrid multiple-criteria decision-making (MCDM) tactic is applied using the degree of membership (DoM) technique with a varied system, using the weighted sum method (WSM), the weighted product method (WPM), the weighted aggregated sum product assessment method (WASPAS), an evaluation based on distance from average solution (EDAS), and a technique for order of preference by similarity to ideal solution (TOPSIS). The weights of importance are assigned to different criteria by the equal weights method (EWM). Furthermore, sensitivity analysis is conducted to check the solidity of the projected tactic. The weights of importance are varied using the entropy weights technique (EWT) and the standard deviation method (SDM). The projected hybrid MCDM methodology is simple, reliable and valuable for a conflicting decision-making environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA