Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(17): e2307263, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38441406

RESUMO

Ferroptosis and apoptosis are key cell-death pathways implicated in several human diseases including cancer. Ferroptosis is driven by iron-dependent lipid peroxidation and currently has no characteristic biomarkers or gene signatures. Here a continuous phenotypic gradient between ferroptosis and apoptosis coupled to transcriptomic and metabolomic landscapes is established. The gradual ferroptosis-to-apoptosis transcriptomic landscape is used to generate a unique, unbiased transcriptomic predictor, the Gradient Gene Set (GGS), which classified ferroptosis and apoptosis with high accuracy. Further GGS optimization using multiple ferroptotic and apoptotic datasets revealed highly specific ferroptosis biomarkers, which are robustly validated in vitro and in vivo. A subset of the GGS is associated with poor prognosis in breast cancer patients and PDXs and contains different ferroptosis repressors. Depletion of one representative, PDGFA-assaociated protein 1(PDAP1), is found to suppress basal-like breast tumor growth in a mouse model. Omics and mechanistic studies revealed that ferroptosis is associated with enhanced lysosomal function, glutaminolysis, and the tricarboxylic acid (TCA) cycle, while its transition into apoptosis is attributed to enhanced endoplasmic reticulum(ER)-stress and phosphatidylethanolamine (PE)-to-phosphatidylcholine (PC) metabolic shift. Collectively, this study highlights molecular mechanisms underlying ferroptosis execution, identified a highly predictive ferroptosis gene signature with prognostic value, ferroptosis versus apoptosis biomarkers, and ferroptosis repressors for breast cancer therapy.


Assuntos
Apoptose , Biomarcadores Tumorais , Ferroptose , Ferroptose/genética , Humanos , Animais , Camundongos , Apoptose/genética , Feminino , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Biomarcadores/metabolismo
2.
PPAR Res ; 2023: 9458308, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875279

RESUMO

The prevalence of colon cancer (CC) is increasing at the endemic scale, which is accompanied by subsequent morbidity and mortality. Although there have been noteworthy achievements in the therapeutic strategies in recent years, the treatment of patients with CC remains a formidable task. The current study focused on to study role of biohydrogenation-derived conjugated linoleic acid (CLA) of probiotic Pediococcus pentosaceus GS4 (CLAGS4) against CC, which induced peroxisome proliferator-activated receptor gamma (PPARγ) expression in human CC HCT-116 cells. Pre-treatment with PPARγ antagonist bisphenol A diglycidyl ether has significantly reduced the inhibitory efficacy of enhanced cell viability of HCT-116 cells, suggesting the PPARγ-dependent cell death. The cancer cells treated with CLA/CLAGS4 demonstrated the reduced level of Prostaglandin E2 PGE2 in association with reduced COX-2 and 5-LOX expressions. Moreover, these consequences were found to be associated with PPARγ-dependent. Furthermore, delineation of mitochondrial dependent apoptosis with the help of molecular docking LigPlot analysis showed that CLA can bind with hexokinase-II (hHK-II) (highly expressed in cancer cells) and that this association underlies voltage dependent anionic channel to open, thereby causing mitochondrial membrane depolarization, a condition that initiates intrinsic apoptotic events. Apoptosis was further confirmed by annexin V staining and elevation of caspase 1p10 expression. Taken all together, it is deduced that, mechanistically, the upregulation of PPARγ by CLAGS4 of P. pentosaceus GS4 can alter cancer cell metabolism in association with triggering apoptosis in CC.

3.
J Cell Sci ; 135(20)2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36172824

RESUMO

Extracellular matrix (ECM) is an important component of stem cell niche. Remodeling of ECM mediated by ECM regulators, such as matrix metalloproteinases (MMPs) plays a vital role in stem cell function. However, the mechanisms that modulate the function of ECM regulators in the stem cell niche are understudied. Here, we explored the role of the transcription factor (TF) ETS-1, which is expressed in the cathepsin-positive cell population, in regulating the expression of the ECM regulator, mt-mmpA, thereby modulating basement membrane thickness. In planarians, the basement membrane around the gut/inner parenchyma is thought to act as a niche for pluripotent stem cells. It has been shown that the early epidermal progenitors migrate outwards from this region and progressively differentiate to maintain the terminal epidermis. Our data shows that thickening of the basement membrane in the absence of ets-1 results in defective migration of stem cell progeny. Furthermore, the absence of ets-1 leads to a defective epidermal progenitor landscape, despite its lack of expression in those cell types. Together, our results demonstrate the active role of ECM remodeling in regulating tissue homeostasis and regeneration in the planarian Schmidtea mediterranea. This article has an associated First Person interview with one of the co-first authors of the paper.


Assuntos
Mediterranea , Planárias , Animais , Humanos , Diferenciação Celular , Catepsinas/metabolismo , Planárias/metabolismo , Epiderme/metabolismo , Metaloproteinases da Matriz/metabolismo , Membrana Basal/metabolismo , Fatores de Transcrição/metabolismo
4.
Dev Biol ; 488: 11-29, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35523320

RESUMO

Planarians have a remarkable ability to undergo whole-body regeneration. Successful regeneration outcome is determined by processes like polarity establishment at the wound site, which is followed by pole (organizer) specification. Interestingly, these determinants are almost exclusively expressed by muscles in these animals. However, the molecular toolkit that enables the functional versatility of planarian muscles remains poorly understood. Here we report that SMED_DDX24, a D-E-A-D Box RNA helicase, is necessary for planarian survival and regeneration. We found that DDX24 is enriched in muscles and its knockdown disrupts muscle fiber organization. This leads to defective pole specification, which in turn results in misregulation of many positional control genes specifically during regeneration. ddx24 RNAi also upregulates wound-induced Wnt signalling. Suppressing this ectopic Wnt activity rescues the knockdown phenotype by enabling better anterior pole regeneration. To summarize, our work highlights the role of an RNA helicase in muscle fiber organization, and modulating amputation-induced wnt levels, both of which seem critical for pole re-organization, thereby regulating whole-body regeneration.


Assuntos
Planárias , Animais , Padronização Corporal/genética , Fibras Musculares Esqueléticas/metabolismo , Planárias/fisiologia , RNA Helicases , Interferência de RNA , Transdução de Sinais/genética , Proteínas Wnt/metabolismo
5.
Sci Adv ; 6(34)2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32937365

RESUMO

Identification of targeted therapies for TNBC is an urgent medical need. Using a drug combination screen reliant on synthetic lethal interactions, we identified clinically relevant combination therapies for different TNBC subtypes. Two drug combinations targeting the BET family were further explored. The first, targeting BET and CXCR2, is specific for mesenchymal TNBC and induces apoptosis, whereas the second, targeting BET and the proteasome, is effective for major TNBC subtypes and triggers ferroptosis. Ferroptosis was induced at low drug doses and was associated with increased cellular iron and decreased glutathione levels, concomitant with reduced levels of GPX4 and key glutathione biosynthesis genes. Further functional studies, analysis of clinical datasets and breast cancer specimens revealed a unique vulnerability of TNBC to ferroptosis inducers, enrichment of ferroptosis gene signature, and differential expression of key proteins that increase labile iron and decrease glutathione levels. This study identified potent combination therapies for TNBC and unveiled ferroptosis as a promising therapeutic strategy.

6.
J Proteomics ; 226: 103894, 2020 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-32652219

RESUMO

The current study examined the cell adherence property of probiotic Pediococcus pentosaceus GS4 (MTCC12683) with the characterization and functionality in adherence of its surface layer protein (GS4-Slp). The Slp of P. pentosaceus GS4 was extracted purified and detected using SDS-PAGE (98 kDa) and size exclusion chromatography. The cell adherence property of probiotic GS4 (Slp+/Slp-) was evaluated on buccal cells and HCT-116. Purified Slp was found neutralized with raised anti-Slp showing reduced adherence to HCT-116 as evident from SEM analysis. The structure of GS4-Slp was determined by MALDI-TOF analysis, CD analysis, atomic force microscopy (AFM), and FT-IR spectrometry. In Silico approach revealed its indirect similarity with cell membrane protein of Helicobacter pylori. Results thus reveal that GS4 has the potential of the production of 98 kDa Slp which facilitates the cell adherence property. This added probiotic attribute will enhance the probiotic potentials of P. pentosaceus GS4 to use it biotechnologically. SIGNIFICANCE: Probiotic Pediococcus pentosaceus GS4 facilitates demonstrable colonization by the elaboration of Slp. This property imparts a value to the strain and claims to be more useful biotechnologically.


Assuntos
Pediococcus pentosaceus , Probióticos , Proteínas de Membrana , Mucosa Bucal , Espectroscopia de Infravermelho com Transformada de Fourier
7.
FEBS Lett ; 593(22): 3198-3209, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31529697

RESUMO

Planaria is an ideal system to study factors involved in regeneration and tissue homeostasis. Little is known about the role of metabolites and small molecules in stem cell maintenance and lineage specification in planarians. Using liquid chromatography and mass spectrometry (LC-MS)-based quantitative metabolomics, we determined the relative levels of metabolites in stem cells, progenitors, and differentiated cells of the planarian Schmidtea mediterranea. Tryptophan and its metabolic product serotonin are significantly enriched in stem cells and progenitor population. Serotonin biosynthesis in these cells is brought about by a noncanonical enzyme, phenylalanine hydroxylase. Knockdown of Smed-pah leads to complete disappearance of eyes in regenerating planaria, while exogenous supply of serotonin and its precursor rescues the eyeless phenotype. Our results demonstrate a key role for serotonin in eye regeneration.


Assuntos
Metabolômica/métodos , Planárias/fisiologia , Serotonina/metabolismo , Animais , Diferenciação Celular , Cromatografia Líquida , Espectrometria de Massas , Fenômenos Fisiológicos Oculares , Fenilalanina Hidroxilase/metabolismo , Regeneração , Células-Tronco/citologia , Células-Tronco/metabolismo , Triptofano/metabolismo
8.
Metabolism ; 65(1): 48-65, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26683796

RESUMO

Obesity is one of the major challenges for public health in 21st century, with 1.9 billion people being considered as overweight and 600 million as obese. There are certain diseases such as type 2 diabetes, hypertension, cardiovascular disease, and several forms of cancer which were found to be associated with obesity. Therefore, understanding the key molecular mechanisms involved in the pathogenesis of obesity could be beneficial for the development of a therapeutic approach. Hormones such as ghrelin, glucagon like peptide 1 (GLP-1) peptide YY (PYY), pancreatic polypeptide (PP), cholecystokinin (CCK) secreted by an endocrine organ gut, have an intense impact on energy balance and maintenance of homeostasis by inducing satiety and meal termination. Glucose and energy homeostasis are also affected by lipid sensing in which different organs respond in different ways. However, there is one common mechanism i.e. formation of esterified lipids (long chain fatty acyl CoAs) and the activation of protein kinase C δ (PKC δ) involved in all these organs. The possible role of gut microbiota and obesity has been addressed by several researchers in recent years, indicating the possible therapeutic approach toward the management of obesity by the introduction of an external living system such as a probiotic. The proposed mechanism behind this activity is attributed by metabolites produced by gut microbial organisms. Thus, this review summarizes the role of various physiological factors such as gut hormone and lipid sensing involved in various tissues and organ and most important by the role of gut microbiota in weight management.


Assuntos
Hormônios Gastrointestinais/fisiologia , Microbioma Gastrointestinal , Metabolismo dos Lipídeos , Obesidade/etiologia , Tecido Adiposo/metabolismo , Encéfalo/metabolismo , Colecistocinina/fisiologia , VLDL-Colesterol/biossíntese , Peptídeo 1 Semelhante ao Glucagon/fisiologia , Humanos , Resistência à Insulina , Obesidade/metabolismo , Obesidade/microbiologia , PPAR gama/fisiologia
9.
Nutr Res ; 35(10): 921-929, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26319614

RESUMO

Probiotic treatment has been gaining attention due to its remarkable effects in alleviating toxicity and carcinogenesis. The novel strain Pediococcus pentosaceus GS4 has been reported for probiotic, survivability in simulated gastrointestinal fluid, and antioxidative and biohydrogenation properties. Therefore, we hypothesize that this specific strain might be able to assuage the effect of azoxymethane (AOM)-induced toxicity in mice. Twenty-eight Swiss albino mice were divided into 4 groups and were studied for 32 weeks. Azoxymethane (10 mg/kg body weight) was administered intraperitoneally twice (0th and 14th days), and probiotic GS4 (1.1 × 10(9) colony-forming unit/mL) was given orally for the respective groups. Mice who served as the normal control received only normal saline. GS4-intervened AOM-induced mice showed marked improvement at the histopathologic level, in the liver and kidney. Moreover, probiotic GS4 intervention in AOM-induced mice exhibited a significant reduction in the liver function biomarker when compared with the AOM-induced mice. Probiotic GS4 intervention reduced the intestinal structural deformities as evident from the elevated brush border membrane-associated disaccharidases (sucrase, lactase) and intestinal alkaline phosphatase activities, which were found disrupted by AOM intoxication. Fecal bacterial load was found to be reduced in AOM-induced mice which were subsequently replenished by the probiotic GS4 intervention as apparent from the enhanced fecal bacterial load. There were no adverse effects observed in the probiotic control group. Conclusively, novel probiotic strain GS4 exhibited safe and beneficial effects against the toxicity threats posed by AOM. Thus, GS4 could be considered as a potential food supplement/additive for therapeutic purposes in gastrointestinal disorders related to inflammation and cancer.


Assuntos
Azoximetano/toxicidade , Pediococcus/fisiologia , Probióticos/uso terapêutico , Fosfatase Alcalina/metabolismo , Animais , Azoximetano/administração & dosagem , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Intestinos/enzimologia , Nefropatias/induzido quimicamente , Nefropatias/prevenção & controle , Lactase/metabolismo , Camundongos , Peritônio/efeitos dos fármacos , Sacarase/metabolismo
10.
Appl Biochem Biotechnol ; 168(5): 1265-76, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22971829

RESUMO

Probiotics with ability to produce conjugated linoleic acid (CLA) is considered as an additive health benefit property for its known role in colon cancer mitigation. The conversion involves the biohydrogenation of the unsaturated fatty acid into conjugated form. Probiotic strain Pediococcus spp. GS4 was efficiently able to biohydrogenate linoleic acid (LA) into its conjugated form within 48 h of incubation. Quantum of CLA produced with a concentration of 121 µg/ml and sustained cell viability of 8.94 log cfu/ml maximally. Moreover, antibacterial effect of LA on the strain ability for biohydrogenation was examined at different concentrations and concluded to have a direct relationship between LA and amount of CLA produced. The efficiency of the strain for CLA production at different pH was also estimated and found maximum at pH 6.0 with 149 µg/ml while this ability was reduced at pH 9.0 to 63 µg/ml. Sesame oil, which is rich in the triacylglycerol form of LA, was also found to act as a substrate for CLA production by Pediococcus spp. GS4 with the aid of lipase-catalyzed triacylglycerol hydrolysis and amount of CLA produced was 31 µg/ml at 0.2 % while 150 µg/ml at 1.0 % of lipolysed oil in skim milk medium. Conjugated form was analyzed using UV scanning, RP-HPLC, and GC-MS. This study also focused on the alternative use of lipolysed sesame oil instead of costly LA for biohydrogenation and could be a potential source for the industrial production of CLA.


Assuntos
Ácido Linoleico/química , Ácidos Linoleicos Conjugados/biossíntese , Pediococcus/química , Probióticos/química , Animais , Antibacterianos/biossíntese , Antibacterianos/química , Antibacterianos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Ácidos Graxos Insaturados/biossíntese , Ácidos Graxos Insaturados/química , Hidrogenação , Ácidos Linoleicos Conjugados/química , Ácidos Linoleicos Conjugados/isolamento & purificação , Ácidos Linoleicos Conjugados/farmacologia , Lipase/química , Lipólise , Leite/química , Leite/metabolismo , Óleo de Gergelim/química , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA