Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecology ; : e4370, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877831
2.
Nature ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570650
3.
J Exp Biol ; 227(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38686556

RESUMO

The ease with which scientific data, particularly certain types of raw data in experimental biology, can be fabricated without trace begs urgent attention. This is thought to be a widespread problem across the academic world, where published results are the major currency, incentivizing publication of (usually positive) results at the cost of lax scientific rigor and even fraudulent data. Although solutions to improve data sharing and methodological transparency are increasingly being implemented, the inability to detect dishonesty within raw data remains an inherent flaw in the way in which we judge research. We therefore propose that one solution would be the development of a non-modifiable raw data format that could be published alongside scientific results; a format that would enable data authentication from the earliest stages of experimental data collection. A further extension of this tool could allow changes to the initial original version to be tracked, so every reviewer and reader could follow the logical footsteps of the author and detect unintentional errors or intentional manipulations of the data. Were such a tool to be developed, we would not advocate its use as a prerequisite for journal submission; rather, we envisage that authors would be given the option to provide such authentication. Only authors who did not manipulate or fabricate their data can provide the original data without risking discovery, so the mere choice to do so already increases their credibility (much like 'honest signaling' in animals). We strongly believe that such a tool would enhance data honesty and encourage more reliable science.


Assuntos
Má Conduta Científica , Disseminação de Informação/métodos , Editoração/normas
4.
Integr Zool ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38348500

RESUMO

In winter, many reptiles have a period of inactivity ("brumation"). During brumation there is no energetic intake, therefore there would be an advantage to reducing energetic expenditure. The size of energetically costly organs, a major determinant of metabolic rate, is known to be flexible in many tetrapods. Seasonal plasticity of organ size could serve as both an energy-saving mechanism and a source of nutrients for brumating reptiles. We studied a population of an invasive gecko, Tarentola annularis, to test for seasonal changes in activity, metabolic rate, and mass of various organs. The observed period of inactivity was December-February. Standard metabolic rates during the activity season were 1.85 times higher than in brumating individuals. This may be attributed to decreased organ mass during winter: heart mass decreased by 37%, stomach mass by 25%, and liver mass by 69%. Interestingly, testes mass increased by 100% during winter, likely in preparation for the breeding season, suggesting that males prioritize breeding over other functions upon return to activity. The size of the kidneys and lungs remained constant. Organ atrophy occurred only after geckos reduced their activity, so we hypothesize that organ mass changes in response to (rather than in anticipation of) cold winter temperatures and the associated fasting. Degradation of visceral organs can maintain energy demands in times of low supply, and catabolism of the protein from these organs can serve as a source of both energy and water during brumation. These findings bring us closer to a mechanistic understanding of reptiles' physiological adaptations to environmental changes.

5.
J Exp Biol ; 226(19)2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37675545

RESUMO

Dietary fatty acids (FAs) have been demonstrated to be differentially stored or used as a metabolic fuel, depending on carbon chain length or saturation level. However, intestinal absorption also differs among FAs, potentially biasing conclusions on functional differences and their subsequent implications. We tested dietary FA usage in a nocturnal insectivorous reptile and a nocturnal insectivorous mammal of similar size: the gecko Hemidactylus turcicus and the shrew Suncus etruscus. We compared the relative presence of 13C isotopes in breath and feces following ingestion of three isotopically enriched fatty acids: linoleic acid (a polyunsaturated FA), oleic acid (monounsaturated) and palmitic acid (saturated). Both species oxidized linoleic and oleic acids at much higher levels than palmitic acid. Egestion of palmitic acid in feces was much higher than that of linoleic and oleic acids. The major difference between geckos and shrews was that the latter digested fatty acids much faster, which was best explained by the difference in the metabolic rates of the species. Circadian differences were evident for gecko metabolic and FA oxidation rates, peaking at night; for shrews, peak oxidation was achieved faster at night but rates did not differ. Our study is among the first to integrate oxidation and absorption patterns, as well as metabolic rates and their rhythms, providing important insights into the utilization of different dietary FAs in different species.


Assuntos
Ácidos Graxos , Lagartos , Animais , Musaranhos , Ácido Oleico , Ácido Palmítico
6.
J Anim Ecol ; 92(11): 2163-2174, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37632258

RESUMO

The reptilian form of hibernation (brumation) is much less studied than its mammalian and insect equivalents. Hibernation and brumation share some basic features but may differ in others. Evidence for hypometabolism in brumating reptiles beyond the effect of temperature is sporadic and often ignored. We calculated the standard metabolic rates (SMR, oxygen uptake during inactivity), in winter and/or summer, of 156 individuals representing 59 species of Israeli squamates across all 17 local families. For 32 species, we measured the same individuals during both seasons. We measured gas exchange continuously in a dark metabolic chamber, under the average January high and low temperatures (20°C and 12°C), during daytime and nighttime. We examined how SMR changes with season, biome, body size, temperature and time of day, using phylogenetic mixed models. Metabolic rates increased at sunrise in the diurnal species, despite no light or other external cues, while in nocturnal species the metabolic rates did not increase. Cathemeral species shifted from a diurnal-like diel pattern in winter to a nocturnal-like pattern in summer. Regardless of season, Mediterranean species SMRs were 30% higher than similar-sized desert species. Summer SMR of all species together scaled with body size with an exponent of 0.84 but dropped to 0.71 during brumation. Individuals measured during both seasons decreased their SMR between summer and winter by a 47%, on average, at 20°C and by 70% at 12°C. Q10 was 1.75 times higher in winter than in summer, possibly indicating an active suppression of metabolic processes under cold temperatures. Our results challenge the commonly held perception that squamate physiology is mainly shaped by temperature, with little role for intrinsic metabolic regulation. The patterns we describe indicate that seasonal, diel and geographic factors can trigger remarkable shifts in metabolism across squamate species.


Assuntos
Temperatura Baixa , Metabolismo Energético , Humanos , Animais , Temperatura , Estações do Ano , Filogenia , Metabolismo Energético/fisiologia , Temperatura Corporal , Mamíferos
7.
Ecol Evol ; 13(7): e10261, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37404701

RESUMO

Camouflage is a common trait enabling animals to avoid detection by predators and prey. Patterns such as spots and stripes are convergent across carnivore families, including felids, and are hypothesized to have adaptive value through camouflage. House cats (Felis catus) were domesticated thousands of years ago, but despite artificial selection for a wide variety of coat colors, the wild-type pattern of tabby cats is very common. We aimed to determine whether this pattern grants an advantage over other morphs in natural environments. We collected cat images taken with camera traps in natural areas near and far from 38 rural settlements in Israel, to compare the habitat use by feral cats of different colors. We tested the effect of proximity to villages and habitat vegetation (normalized difference vegetation index, NDVI) on the probability of space use by the tabby morph compared to the others. NDVI had a positive effect on site use in both morphs, but non-tabby cats had a 2.1 higher probability of using the near sites than the far sites, independent of NDVI. The wild-type tabby cats' probability of site use were equally likely to be unaffected by proximity, or have an interaction of proximity with NDVI whereby the far transects are used with increasing probability in sites of denser vegetation. We hypothesize that the camouflage of tabby cats, more than other colors and patterns, confers an advantage in roaming the woodland habitats for which this pattern evolved. This has both theoretical implications as rare empirical evidence of the adaptive value of fur coloration, and practical implications on managing the ecological impact of feral cats worldwide.

8.
Insects ; 12(1)2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374521

RESUMO

The main challenge facing a parasite of social insects lies in deceiving its host's detection and defense systems in order to enter and survive within the host colony. Sphecophaga orientalis is an ichneumonid wasp that parasitizes the pupae of the Oriental hornet Vespa orientalis. In Israel's Mediterranean region, this parasitoid infects on average 23.48% (8-56%) of the host pupal cells. Observation of colonies brought to the laboratory revealed that the parasite moves around within the colony without being aggressed by the host workers. To assess how the parasite evades host detection and defense, we compared the cuticular hydrocarbon (CHC) profiles of both species. There was little similarity between the parasite and the host workers' CHC, refuting the hypothesis of chemical mimicry. The parasite's CHCs were dominated by linear alkanes and alkenes with negligible amounts of branched alkanes, while the host workers' CHCs were rich in branched alkanes and with little or no alkenes. Moreover, the parasite cuticular wash was markedly rich in oleic acid, previously reported as a cue eliciting necrophoric behavior. Since nests of Oriental hornets are typified by large amounts of prey residues, we suggest that, due to its unfamiliar CHCs and the abundance of oleic acid, the parasite is considered as refuse by the host. We also detected rose oxide in the parasitoid head extracts. Rose oxide is a known insect repellent, and can be used to repel and mitigate aggression in workers. These two factors, in concert, are believed to aid the parasite to evade host aggression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA