Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 298(7): 102067, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35623386

RESUMO

Bacteria adapt to utilize the nutrients available in their environment through a sophisticated metabolic system composed of highly specialized enzymes. Although these enzymes can metabolize molecules other than those for which they evolved, their efficiency toward promiscuous substrates is considered too low to be of physiological relevance. Herein, we investigated the possibility that these promiscuous enzymes are actually efficient enough at metabolizing secondary substrates to modify the phenotype of the cell. For example, in the bacterium Acinetobacter baylyi ADP1 (ADP1), panD (coding for l-aspartate decarboxylase) encodes the only protein known to catalyze the synthesis of ß-alanine, an obligate intermediate in CoA synthesis. However, we show that the ADP1 ΔpanD mutant could also form this molecule through an unknown metabolic pathway arising from promiscuous enzymes and grow as efficiently as the wildtype strain. Using metabolomic analyses, we identified 1,3-diaminopropane and 3-aminopropanal as intermediates in this novel pathway. We also conducted activity screening and enzyme kinetics to elucidate candidate enzymes involved in this pathway, including 2,4-diaminobutyrate aminotransferase (Dat) and 2,4-diaminobutyrate decarboxylase (Ddc) and validated this pathway in vivo by analyzing the phenotype of mutant bacterial strains. Finally, we experimentally demonstrate that this novel metabolic route is not restricted to ADP1. We propose that the occurrence of conserved genes in hundreds of genomes across many phyla suggests that this previously undescribed pathway is widespread in prokaryotes.


Assuntos
Acinetobacter , Vias Biossintéticas , Acinetobacter/genética , Acinetobacter/metabolismo , Escherichia coli/metabolismo , Redes e Vias Metabólicas , Transaminases/genética , Transaminases/metabolismo , beta-Alanina/metabolismo
2.
J Proteome Res ; 19(2): 914-925, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31913637

RESUMO

Well-characterized prognostic biomarkers and reliable quantitative methods are key in sepsis management. Among damage-associated molecular patterns, S100A8/S100A9 complexes are reported to be markers for injured cells and to improve the prediction of death in septic shock patients. In view of the structural diversity observed for the intracellular forms, insight into circulating complexes and proteoforms is required to establish prognostic biomarkers. Here, we developed top-down and bottom-up proteomics to characterize the association of S100A8 and S100A9 in complexes and major circulating proteoforms. An antibody-free method was developed for absolute quantification of S100A8/S100A9 in a cohort of 49 patients to evaluate the prognostic value on the first day after admission for septic shock. The predominant circulating forms identified by top-down proteomics were S100A8, mono-oxidized S100A8, truncated acetylated S100A9, and S-nitrosylated S100A9. S100A8, truncated acetylated S100A9, and mono-oxidized S100A8 discriminated between survivors and nonsurvivors, along with total S100A8/S100A9 measured by the antibody-free bottom-up method. Overall, new insights into circulating S100A8/S100A9 and confirmation of its prognostic value in septic shock are crucial in qualification of this biomarker. Also, the simple antibody-free assay would support the harmonization of S100A8/S100A9 measurements.


Assuntos
Proteômica , Choque Séptico , Calgranulina A/genética , Calgranulina B/genética , Humanos , Prognóstico , Choque Séptico/diagnóstico
3.
Sci Rep ; 9(1): 15660, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31666644

RESUMO

Biomarkers in sepsis for severity, prediction of outcome or reversibility of organ dysfunction are warranted. Measurements of plasma DAMP levels at admission can reflect the severity of cellular damage in septic shock, which might predict the prognosis and reduce the risk of overtreating patients with costly therapies. We measured plasma levels of two DAMPs, S100A8/S100A9 and S100A12 during the first 24 h of admission of septic shock patients. Forty-nine septic shock patients with a similar SOFA scores were selected from our sepsis database to compare a similar proportion of survivors and non-survivors. Plasma levels of S100A8/S100A9 and S100A12 were compared with healthy volunteers using in-house ELISA. Plasma levels of S100A8/S100A9 and S100A12 (5.71 [2.60-13.63] µg/mL and 0.48 [0.22-1.05] µg/mL) were higher in septic shock patients than in healthy volunteers (1.18 [0.74-1.93] µg/mL and 0.09 [0.02-0.39] µg/mL) (P < 0.0001 and P = 0.0030). Levels of S100A8/S100A9 and S100A12 in non-survivors at day 28 (11.70 [2.85-24.36] µg/mL and 0.62 [0.30-1.64] µg/mL) were significantly higher than in survivors (4.59 [2.16-7.47] µg/mL and 0.30 [0.20-0.49] µg/mL) (P = 0.0420 and P = 0.0248) and correlated well (Spearman r = 0.879, P < 0.0001). The high level of plasma calgranulins at admission in septic shock, were higher in non-survivors compared to survivors. These markers could indicate a higher risk of death when SOFA scores are similar and help the stratification of patients for improved care and therapy selection.


Assuntos
Calgranulina A/sangue , Calgranulina B/sangue , Admissão do Paciente , Proteína S100A12/sangue , Choque Séptico/sangue , Choque Séptico/mortalidade , Adulto , Idoso , Feminino , Humanos , Complexo Antígeno L1 Leucocitário/sangue , Masculino , Pessoa de Meia-Idade , Prognóstico , Risco , Choque Séptico/diagnóstico , Análise de Sobrevida
4.
Cell Stem Cell ; 24(6): 958-973.e9, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31006622

RESUMO

Muscle satellite cells (MuSCs) are the quiescent muscle stem cells required for adult skeletal muscle repair. The impact of environmental stress such as pollution on MuSC behavior remains unexplored. We evaluated the impact of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure, a ubiquitous and highly toxic pollutant, on MuSCs by combining in vivo mouse molecular genetic models with ex vivo studies. While all MuSCs express the transcription factor PAX7, we show that a subset also express PAX3 and exhibit resistance to environmental stress. Upon systemic TCDD treatment, PAX3-negative MuSCs display impaired survival, atypical activation, and sporadic differentiation through xenobiotic aryl hydrocarbon receptor signaling. We further show that PAX3-positive MuSCs become sensitized to environmental stress when PAX3 function is impaired and that PAX3-mediated induction of mTORC1 is required for protection. Our study, therefore, identifies a functional heterogeneity of MuSCs in response to environmental stress controlled by PAX3.


Assuntos
Células-Tronco Adultas/fisiologia , Poluição Ambiental/efeitos adversos , Fator de Transcrição PAX3/metabolismo , Fator de Transcrição PAX7/metabolismo , Dibenzodioxinas Policloradas/efeitos adversos , Células Satélites de Músculo Esquelético/fisiologia , Animais , Diferenciação Celular , Sobrevivência Celular , Células Cultivadas , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Transcrição PAX3/genética , Fator de Transcrição PAX7/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais
5.
Langmuir ; 33(1): 332-339, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-27982597

RESUMO

In paper-based devices, capillary fluid flow is based on length-scale selective functional control within a hierarchical porous system. The fluid flow can be tuned by altering the paper preparation process, which controls parameters such as the paper grammage. Interestingly, the fiber morphology and nanoporosity are often neglected. In this work, porous voids are incorporated into paper by the combination of dense or mesoporous ceramic silica coatings with hierarchically porous cotton linter paper. Varying the silica coating leads to significant changes in the fluid flow characteristics, up to the complete water exclusion without any further fiber surface hydrophobization, providing new approaches to control fluid flow. Additionally, functionalization with redox-responsive polymers leads to reversible, dynamic gating of fluid flow in these hybrid paper materials, demonstrating the potential of length scale specific, dynamic, and external transport control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA