Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Leukemia ; 38(2): 302-317, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38057495

RESUMO

Chronic lymphocytic leukemia (CLL) is still an incurable disease, with many patients developing resistance to conventional and targeted therapies. To better understand the physiology of CLL and facilitate the development of innovative treatment options, we examined specific metabolic features in the tumor CLL B-lymphocytes. We observed metabolic reprogramming, characterized by a high level of mitochondrial oxidative phosphorylation activity, a low glycolytic rate, and the presence of C2- to C6-carnitine end-products revealing an unexpected, essential role for peroxisomal fatty acid beta-oxidation (pFAO). Accordingly, downmodulation of ACOX1 (a rate-limiting pFAO enzyme overexpressed in CLL cells) was enough to shift the CLL cells' metabolism from lipids to a carbon- and amino-acid-based phenotype. Complete blockade of ACOX1 resulted in lipid droplet accumulation and caspase-dependent death in CLL cells, including those from individuals with poor cytogenetic and clinical prognostic factors. In a therapeutic translational approach, ACOX1 inhibition spared non-tumor blood cells from CLL patients but led to the death of circulating, BCR-stimulated CLL B-lymphocytes and CLL B-cells receiving pro-survival stromal signals. Furthermore, a combination of ACOX1 and BTK inhibitors had a synergistic killing effect. Overall, our results highlight a less-studied but essential metabolic pathway in CLL and pave the way towards the development of new, metabolism-based treatment options.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Linfócitos B/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos/uso terapêutico , Leucemia Linfocítica Crônica de Células B/patologia , Reprogramação Metabólica , Mitocôndrias/metabolismo
2.
Cancers (Basel) ; 15(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37190234

RESUMO

In addition to intrinsic genomic and nongenomic alterations, tumor progression is also dependent on the tumor microenvironment (TME, mainly composed of the extracellular matrix (ECM), secreted factors, and bystander immune and stromal cells). In chronic lymphocytic leukemia (CLL), B cells have a defect in cell death; contact with the TME in secondary lymphoid organs dramatically increases the B cells' survival via the activation of various molecular pathways, including the B cell receptor and CD40 signaling. Conversely, CLL cells increase the permissiveness of the TME by inducing changes in the ECM, secreted factors, and bystander cells. Recently, the extracellular vesicles (EVs) released into the TME have emerged as key arbiters of cross-talk with tumor cells. The EVs' cargo can contain various bioactive substances (including metabolites, proteins, RNA, and DNA); upon delivery to target cells, these substances can induce intracellular signaling and drive tumor progression. Here, we review recent research on the biology of EVs in CLL. EVs have diagnostic/prognostic significance and clearly influence the clinical outcome of CLL; hence, from the perspective of blocking CLL-TME interactions, EVs are therapeutic targets. The identification of novel EV inhibitors might pave the way to the development of novel combination treatments for CLL and the optimization of currently available treatments (including immunotherapy).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA