Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39000386

RESUMO

Cholangiocarcinoma (CCA), or bile duct cancer, is the second most common liver malignancy, with an increasing incidence in Western countries. The lack of effective treatments associated with the absence of early symptoms highlights the need to search for new therapeutic targets for CCA. Sulfatides (STs), a type of sulfoglycosphingolipids, have been found in the biliary tract, with increased levels in CCA and other types of cancer. STs are involved in protein trafficking and cell adhesion as part of the lipid rafts of the plasma membrane. We aimed to study the role of STs in CCA by the genetic targeting of GAL3ST1, an enzyme involved in ST synthesis. We used the CRISPR-Cas9 system to generate GAL3ST1-deficient TFK1 cells. GAL3ST1 KO cells showed lower proliferation and clonogenic activity and reduced glycolytic activity compared to TFK1 cells. Polarized TFK1 GAL3ST1 KO cells displayed increased transepithelial resistance and reduced permeability compared to TFK1 wt cells. The loss of GAL3ST1 showed a negative effect on growth in 30 out of 34 biliary tract cancer cell lines from the DepMap database. GAL3ST1 deficiency partially restored epithelial identity and barrier function and reduced proliferative activity in CCA cells. Sulfatide synthesis may provide a novel therapeutic target for CCA.


Assuntos
Neoplasias dos Ductos Biliares , Proliferação de Células , Colangiocarcinoma , Transição Epitelial-Mesenquimal , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Colangiocarcinoma/genética , Humanos , Transição Epitelial-Mesenquimal/genética , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/genética , Linhagem Celular Tumoral , Sulfotransferases/metabolismo , Sulfotransferases/genética , Sulfotransferases/deficiência , Sulfoglicoesfingolipídeos/metabolismo , Sistemas CRISPR-Cas , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia
2.
Microb Cell Fact ; 23(1): 119, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659027

RESUMO

BACKGROUND: Clostridium spp. has demonstrated therapeutic potential in cancer treatment through intravenous or intratumoral administration. This approach has expanded to include non-pathogenic clostridia for the treatment of various diseases, underscoring the innovative concept of oral-spore vaccination using clostridia. Recent advancements in the field of synthetic biology have significantly enhanced the development of Clostridium-based bio-therapeutics. These advancements are particularly notable in the areas of efficient protein overexpression and secretion, which are crucial for the feasibility of oral vaccination strategies. Here, we present two examples of genetically engineered Clostridium candidates: one as an oral cancer vaccine and the other as an antiviral oral vaccine against SARS-CoV-2. RESULTS: Using five validated promoters and a signal peptide derived from Clostridium sporogenes, a series of full-length NY-ESO-1/CTAG1, a promising cancer vaccine candidate, expression vectors were constructed and transformed into C. sporogenes and Clostridium butyricum. Western blotting analysis confirmed efficient expression and secretion of NY-ESO-1 in clostridia, with specific promoters leading to enhanced detection signals. Additionally, the fusion of a reported bacterial adjuvant to NY-ESO-1 for improved immune recognition led to the cloning difficulties in E. coli. The use of an AUU start codon successfully mitigated potential toxicity issues in E. coli, enabling the secretion of recombinant proteins in C. sporogenes and C. butyricum. We further demonstrate the successful replacement of PyrE loci with high-expression cassettes carrying NY-ESO-1 and adjuvant-fused NY-ESO-1, achieving plasmid-free clostridia capable of secreting the antigens. Lastly, the study successfully extends its multiplex genetic manipulations to engineer clostridia for the secretion of SARS-CoV-2-related Spike_S1 antigens. CONCLUSIONS: This study successfully demonstrated that C. butyricum and C. sporogenes can produce the two recombinant antigen proteins (NY-ESO-1 and SARS-CoV-2-related Spike_S1 antigens) through genetic manipulations, utilizing the AUU start codon. This approach overcomes challenges in cloning difficult proteins in E. coli. These findings underscore the feasibility of harnessing commensal clostridia for antigen protein secretion, emphasizing the applicability of non-canonical translation initiation across diverse species with broad implications for medical or industrial biotechnology.


Assuntos
Clostridium butyricum , Clostridium , Proteínas Recombinantes , Clostridium butyricum/genética , Clostridium butyricum/metabolismo , Clostridium/genética , Clostridium/metabolismo , Humanos , Proteínas Recombinantes/genética , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/genética , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/genética , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Administração Oral , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Esporos Bacterianos/genética , Esporos Bacterianos/imunologia , Vacinação , COVID-19/prevenção & controle , Engenharia Genética , Escherichia coli/genética , Escherichia coli/metabolismo , Regiões Promotoras Genéticas
3.
Artigo em Inglês | MEDLINE | ID: mdl-38375937

RESUMO

CONTEXT: Abdominal obesity is associated with increased cardiometabolic disease risk, while lower body fat seems to confer protection against obesity-related complications. The functional differences between upper and lower body adipose tissue (AT) remain poorly understood. OBJECTIVE: We aimed to examine whether mitochondrial respiration is impaired in abdominal as compared to femoral differentiated human multipotent adipose-derived stem cells (hMADS; primary outcome) and AT in postmenopausal women. DESIGN: In this cross-sectional study, 23 postmenopausal women with normal weight or obesity were recruited at the University of Birmingham/Queen Elizabeth Hospital Birmingham (Birmingham, UK). We collected abdominal and femoral subcutaneous AT biopsies to determine mitochondrial oxygen consumption rates in differentiated abdominal and femoral hMADS. Furthermore, we assessed OXPHOS protein expression and mtDNA content in abdominal and femoral AT as well as hMADS. Finally, we explored in vivo fractional oxygen extraction and carbon dioxide release across abdominal and femoral subcutaneous AT in a subgroup of the same individuals with normal weight or obesity. RESULTS: We found lower basal and maximal uncoupled mitochondrial oxygen consumption rates in abdominal compared to femoral hMADS. In line, in vivo fractional oxygen extraction and carbon dioxide release were lower across abdominal than femoral AT. OXPHOS protein expression and mtDNA content did not significantly differ between abdominal and femoral differentiated hMADS and AT. CONCLUSION: The present findings demonstrate that in vitro mitochondrial respiration and in vivo oxygen fractional extraction are lower in upper compared to lower body differentiated hMADS and AT, respectively, in postmenopausal women.

5.
Cancers (Basel) ; 16(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38254860

RESUMO

The discovery of the distinctive structure of heavy chain-only antibodies in species belonging to the Camelidae family has elicited significant interest in their variable antigen binding domain (VHH) and gained attention for various applications, such as cancer diagnosis and treatment. This article presents an overview of the characteristics, advantages, and disadvantages of VHHs as compared to conventional antibodies, and their usage in diverse applications. The singular properties of VHHs are explained, and several strategies that can augment their utility are outlined. The preclinical studies illustrating the diagnostic and therapeutic efficacy of distinct VHHs in diverse formats against solid cancers are summarized, and an overview of the clinical trials assessing VHH-based agents in oncology is provided. These investigations demonstrate the enormous potential of VHHs for medical research and healthcare.

6.
Br J Cancer ; 130(4): 568-584, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38160212

RESUMO

BACKGROUND: Lung cancer is the most lethal cancer, and 85% of cases are classified as non-small cell lung cancer (NSCLC). Metabolic rewiring is a cancer hallmark that causes treatment resistance, and lacks insights into serine/glycine pathway adaptations upon radiotherapy. METHODS: We analyzed radiotherapy responses using mass-spectrometry-based metabolomics in NSCLC patient's plasma and cell lines. Efficacy of serine/glycine conversion inhibitor sertraline with radiotherapy was investigated by proliferation, clonogenic and spheroid assays, and in vivo using a serine/glycine dependent NSCLC mouse model by assessment of tumor growth, metabolite and cytokine levels, and immune signatures. RESULTS: Serine/glycine pathway metabolites were significantly consumed in response to radiotherapy in NSCLC patients and cell models. Combining sertraline with radiotherapy impaired NSCLC proliferation, clonogenicity and stem cell self-renewal capacity. In vivo, NSCLC tumor growth was reduced solely in the sertraline plus radiotherapy combination treatment group. Tumor weights linked to systemic serine/glycine pathway metabolite levels, and were inhibited in the combination therapy group. Interestingly, combination therapy reshaped the tumor microenvironment via cytokines associated with natural killer cells, supported by eradication of immune checkpoint galectin-1 and elevated granzyme B levels. CONCLUSION: Our findings highlight that targeting serine/glycine metabolism using sertraline restricts cancer cell recovery from radiotherapy and provides tumor control through immunomodulation in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Camundongos , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/metabolismo , Serina , Sertralina , Linhagem Celular Tumoral , Glicina , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA