RESUMO
Swordtail fish have been studied extensively in relation to diverse aspects of biology; however, little attention has been paid to the patterns of genetic variation within and among populations of swordtails. In this study, we sequenced the mtDNA control region from 65 individuals and 10 populations of Xiphophorus cortezi to investigate the genetic variation within and among populations, including tests for correlations between genetic and geographic distances and tests for species monophyly. We found low gene and nucleotide diversity within populations and high degrees of genetic differentiation among populations. Significant and positive correlations between genetic distance and both river and straight-line geographic distance indicate that genetic differentiation among X. cortezi populations can be explained, to some extent, by an isolation-by-distance model and provide evidence of stream capture. Phylogenetic analyses suggest that X. cortezi is paraphyletic relative to X. malinche, raising questions concerning the status of these taxa as separate species.
Assuntos
Ciprinodontiformes/genética , Demografia , Variação Genética , Genética Populacional , Filogenia , Animais , Sequência de Bases , Ciprinodontiformes/classificação , Primers do DNA , DNA Mitocondrial/genética , Geografia , Funções Verossimilhança , Modelos Genéticos , Modelos Teóricos , Dados de Sequência Molecular , Análise de Sequência de DNARESUMO
Females of many species can gain benefits from being choosy about their mates and even exhibit context-dependent investment in reproduction in response to the quality of their breeding situation. Here, we show that if a male house wren is provided with surplus nest boxes in his territory, his mate lays a larger clutch with a significantly higher proportion of sons. This response to a territory characteristic directly associated with male competitive ability, and ultimately to male reproductive success, suggests that male competition over access to high-quality territories with surplus nest boxes (i.e. those able to support polygyny) may influence female reproductive investment decisions. The results of this study have interesting implications, particularly considering the important role that studies of cavity nesting birds utilizing nest boxes have played in advancing our understanding of behaviour, ecology and evolution.