Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 41(22): e111158, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36245278

RESUMO

Apicomplexan parasites possess secretory organelles called rhoptries that undergo regulated exocytosis upon contact with the host. This process is essential for the parasitic lifestyle of these pathogens and relies on an exocytic machinery sharing structural features and molecular components with free-living ciliates. However, how the parasites coordinate exocytosis with host interaction is unknown. Here, we performed a Tetrahymena-based transcriptomic screen to uncover novel exocytic factors in Ciliata and conserved in Apicomplexa. We identified membrane-bound proteins, named CRMPs, forming part of a large complex essential for rhoptry secretion and invasion in Toxoplasma. Using cutting-edge imaging tools, including expansion microscopy and cryo-electron tomography, we show that, unlike previously described rhoptry exocytic factors, TgCRMPs are not required for the assembly of the rhoptry secretion machinery and only transiently associate with the exocytic site-prior to the invasion. CRMPs and their partners contain putative host cell-binding domains, and CRMPa shares similarities with GPCR proteins. Collectively our data imply that the CRMP complex acts as a host-molecular sensor to ensure that rhoptry exocytosis occurs when the parasite contacts the host cell.


Assuntos
Toxoplasma , Toxoplasma/genética , Toxoplasma/metabolismo , Proteínas de Protozoários/metabolismo , Organelas/metabolismo , Exocitose , Proteínas de Membrana/metabolismo , Interações Hospedeiro-Parasita
2.
Front Immunol ; 12: 643292, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34262559

RESUMO

Toxoplasmosis is a prevalent parasitic disease caused by Toxoplasma gondii (T. gondii). Under the control of the host immune system, T. gondii persists as latent bradyzoite cysts. Immunosuppression leads to their reactivation, a potentially life-threatening condition. Interferon-gamma (IFN-γ) controls the different stages of toxoplasmosis. Here, we addressed the role of the parasite surface antigen P18, belonging to the Surface-Antigen 1 (SAG-1) Related Sequence (SRS) family, in a cyst-forming strain. Deletion of P18 gene (KO P18) impaired the invasion of parasites in macrophages and IFN-γ-mediated activation of macrophages further reduced the invasion capacity of this KO, as compared to WT strain. Mice infected by KO P18, showed a marked decrease in virulence during acute toxoplasmosis. This was consequent to less parasitemia, accompanied by a substantial recruitment of dendritic cells, macrophages and natural killer cells (NK). Furthermore, KO P18 resulted in a higher number of bradyzoite cysts, and a stronger inflammatory response. A prolonged survival of mice was observed upon immunosuppression of KO P18 infected BALB/c mice or upon oral infection of Severe Combined Immunodeficiency (SCID) mice, with intact macrophages and natural killer (NK) cells. In stark contrast, oral infection of NSG (NOD/Shi-scid/IL-2Rγnull) mice, defective in macrophages and NK cells, with KO P18, was as lethal as that of the control strain showing that the conversion from bradyzoites to tachyzoites is intact and, suggesting a role of P18 in the response to host IFN-γ. Collectively, these data demonstrate a role for P18 surface antigen in the invasion of macrophages and in the virulence of the parasite, during acute and chronic toxoplasmosis.


Assuntos
Células Dendríticas/imunologia , Células Matadoras Naturais/imunologia , Macrófagos/imunologia , Toxoplasma , Toxoplasmose , Fatores de Virulência , Animais , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos SCID , Toxoplasma/genética , Toxoplasma/imunologia , Toxoplasma/patogenicidade , Toxoplasmose/genética , Toxoplasmose/imunologia , Fatores de Virulência/genética , Fatores de Virulência/imunologia
3.
Front Immunol ; 12: 629917, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33767699

RESUMO

Toxoplasma gondii is a prevalent parasite of medical and veterinary importance. Tachyzoïtes and bradyzoïtes are responsible for acute and chronic toxoplasmosis (AT and CT), respectively. In immunocompetent hosts, AT evolves into a persistent CT, which can reactivate in immunocompromised patients with dire consequences. Imiquimod is an efficient immunomodulatory drug against certain viral and parasitic infections. In vivo, treatment with Imiquimod, throughout AT, reduces the number of brain cysts while rendering the remaining cysts un-infectious. Post-establishment of CT, Imiquimod significantly reduces the number of brain cysts, leading to a delay or abortion of reactivation. At the molecular level, Imiquimod upregulates the expression of Toll-like receptors 7, 11, and 12, following interconversion from bradyzoïtes to tachyzoïtes. Consequently, MyD88 pathway is activated, resulting in the induction of the immune response to control reactivated Toxoplasma foci. This study positions Imiquimod as a potent drug against toxoplasmosis and elucidates its mechanism of action particularly against chronic toxoplasmosis, which is the most prevalent form of the disease.


Assuntos
Imiquimode/farmacologia , Fator 88 de Diferenciação Mieloide/fisiologia , Receptores Toll-Like/efeitos dos fármacos , Toxoplasmose/tratamento farmacológico , Animais , Encéfalo/parasitologia , Células Cultivadas , Feminino , Humanos , Imiquimode/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Transdução de Sinais/efeitos dos fármacos , Receptores Toll-Like/fisiologia , Toxoplasma/efeitos dos fármacos , Toxoplasmose/imunologia
4.
Nat Microbiol ; 6(4): 425-434, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33495622

RESUMO

Apicomplexa are unicellular eukaryotes and obligate intracellular parasites, including Plasmodium (the causative agent of malaria) and Toxoplasma (one of the most widespread zoonotic pathogens). Rhoptries, one of their specialized secretory organelles, undergo regulated exocytosis during invasion1. Rhoptry proteins are injected directly into the host cell to support invasion and subversion of host immune function2. The mechanism by which they are discharged is unclear and appears distinct from those in bacteria, yeast, animals and plants. Here, we show that rhoptry secretion in Apicomplexa shares structural and genetic elements with the exocytic machinery of ciliates, their free-living relatives. Rhoptry exocytosis depends on intramembranous particles in the shape of a rosette embedded into the plasma membrane of the parasite apex. Formation of this rosette requires multiple non-discharge (Nd) proteins conserved and restricted to Ciliata, Dinoflagellata and Apicomplexa that together constitute the superphylum Alveolata. We identified Nd6 at the site of exocytosis in association with an apical vesicle. Sandwiched between the rosette and the tip of the rhoptry, this vesicle appears as a central element of the rhoptry secretion machine. Our results describe a conserved secretion system that was adapted to provide defence for free-living unicellular eukaryotes and host cell injection in intracellular parasites.


Assuntos
Alveolados/fisiologia , Organelas/metabolismo , Alveolados/classificação , Alveolados/ultraestrutura , Membrana Celular/metabolismo , Exocitose , Interações Hospedeiro-Parasita , Humanos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Vesículas Secretórias/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-32714878

RESUMO

Apicomplexa are obligate intracellular parasites which cause various animal and human diseases including malaria, toxoplasmosis, and cryptosporidiosis. They proliferate by a unique mechanism that combines physically separated semi-closed mitosis of the nucleus and assembly of daughter cells by internal budding. Mitosis occurs in the presence of a nuclear envelope and with little appreciable chromatin condensation. A long standing question in the field has been how parasites keep track of their uncondensed chromatin chromosomes throughout their development, and hence secure proper chromosome segregation during division. Past work demonstrated that the centromeres, the region of kinetochore assembly at chromosomes, of Toxoplasma gondii remain clustered at a defined region of the nuclear periphery proximal to the main microtubule organizing center of the cell, the centrosome. We have proposed that this mechanism is likely involved in the process. Here we set out to identify underlying molecular players involved in centromere clustering. Through pharmacological treatment and structural analysis we show that centromere clustering is not mediated by persistent microtubules of the mitotic spindle. We identify the chromatin binding factor a homolog of structural maintenance of chromosomes 1 (SMC1). Additionally, we show that both TgSMC1, and a centromeric histone, interact with TgExportin1, a predicted soluble component of the nuclear pore complex. Our results suggest that the nuclear envelope, and in particular the nuclear pore complex may play a role in positioning centromeres in T. gondii.


Assuntos
Toxoplasma , Animais , Centrômero , Segregação de Cromossomos , Cromossomos Humanos Par 1 , Humanos , Poro Nuclear , Toxoplasma/genética
6.
Cell Microbiol ; 22(1): e13120, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31628778

RESUMO

Zinc finger proteins (ZFPs) are one of the most abundant groups of proteins with a wide range of molecular functions. We have characterised a Toxoplasma protein that we named TgZFP2, as it bears a zinc finger domain conserved in eukaryotes. However, this protein has little homology outside this region and contains no other conserved domain that could hint for a particular function. We thus investigated TgZFP2 function by generating a conditional mutant. We showed that depletion of TgZFP2 leads to a drastic arrest in the parasite cell cycle, and complementation assays demonstrated the zinc finger domain is essential for TgZFP2 function. More precisely, whereas replication of the nuclear material is initially essentially unaltered, daughter cell budding is seriously impaired: to a large extent newly formed buds fail to incorporate nuclear material. TgZFP2 is found at the basal complex in extracellular parasites and after invasion, but as the parasites progress into cell division, it relocalises to cytoplasmic punctate structures and, strikingly, accumulates in the pericentrosomal area at the onset of daughter cell elongation. Centrosomes have emerged as major coordinators of the budding and nuclear cycles in Toxoplasma, and our study identifies a novel and important component of this machinery.


Assuntos
Mitose/genética , Proteínas de Protozoários/genética , Toxoplasma/genética , Toxoplasma/fisiologia , Fatores de Transcrição/genética , Núcleo Celular/metabolismo , Proteínas de Protozoários/metabolismo , Fatores de Transcrição/metabolismo , Dedos de Zinco
7.
mBio ; 10(4)2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31266861

RESUMO

Toxoplasma gondii evades host immunity to establish a chronic infection. Here, we assessed the role of parasitophorous vacuole (PV) membrane (PVM)- and intravacuolar network (IVN) membrane-localized dense granule (GRA) proteins in the development of acute and chronic Toxoplasma infection. Deletion of PVM-associated GRA3, GRA7, GRA8, and GRA14 or IVN membrane-associated GRA2, GRA9, and GRA12 in the low-virulence type II Prugniaud (Pru) strain induced severe defects in the development of chronic-stage cysts in vivo without affecting the parasite growth rate or the ability to differentiate into cysts in vitro Acute virulence of the PruΔgra2, PruΔgra3, and PruΔgra4 mutants was reduced but not abolished. In contrast, the PruΔgra12 mutant was avirulent in mice and PruΔgra12 parasites failed to establish a chronic infection. High-virulence type I strain RHΔgra12 parasites also exhibited a major defect in acute virulence. In gamma interferon (IFN-γ)-activated macrophages, type I RHΔgra12 and type II PruΔgra12 parasites resisted the coating of the PVM with host immunity-related GTPases as effectively as the parental type I RHΔku80 and type II PruΔku80 strains, respectively. Despite this resistance, Δgra12 PVs ultimately succumbed to IFN-γ-activated host cell innate immunity. Our findings uncover a key role for GRA12 in mediating resistance to host IFN-γ and reveal that many other IVN membrane-associated GRA proteins, as well as PVM-localized GRA proteins, play important roles in establishing chronic infection.IMPORTANCEToxoplasma gondii cysts reactivate during immune deficiency and cause fatal encephalitis. Parasite molecules that coordinate the development of acute and chronic infection are poorly characterized. Here, we show that many intravacuolar network membrane and parasitophorous vacuole membrane-associated dense granule (GRA) proteins orchestrate the development of chronic cysts in vivo A subset of these GRA proteins also modulate acute virulence, and one protein that associates with the intravacuolar network membranes, namely GRA12, was identified as a major virulence factor required for parasite resistance to host gamma interferon (IFN-γ). Our results revealed that many parasitophorous vacuole membrane and intravacuolar network membrane-associated GRA proteins are essential for successful chronic infection.


Assuntos
Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Interferon gama/antagonistas & inibidores , Proteínas de Protozoários/metabolismo , Toxoplasma/imunologia , Toxoplasmose/imunologia , Vacúolos/metabolismo , Animais , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Feminino , Deleção de Genes , Membranas Intracelulares/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Teóricos , Proteínas de Protozoários/genética , Análise de Sobrevida , Toxoplasma/crescimento & desenvolvimento , Toxoplasmose/parasitologia , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-30177911

RESUMO

O-linked ß-N-acetylglucosaminylation or O-GlcNAcylation is a widespread post-translational modification that belongs to the large and heterogeneous group of glycosylations. The functions managed by O-GlcNAcylation are diverse and include regulation of transcription, replication, protein's fate, trafficking, and signaling. More and more evidences tend to show that deregulations in the homeostasis of O-GlcNAcylation are involved in the etiology of metabolic diseases, cancers and neuropathologies. O-GlcNAc transferase or OGT is the enzyme that transfers the N-acetylglucosamine residue onto target proteins confined within the cytosolic and nuclear compartments. A form of OGT was predicted for Toxoplasma and recently we were the first to show evidence of O-GlcNAcylation in the apicomplexans Toxoplasma gondii and Plasmodium falciparum. Numerous studies have explored the O-GlcNAcome in a wide variety of biological models but very few focus on protists. In the present work, we used enrichment on sWGA-beads and immunopurification to identify putative O-GlcNAcylated proteins in Toxoplasma gondii. Many of the proteins found to be O-GlcNAcylated were originally described in higher eukaryotes and participate in cell shape organization, response to stress, protein synthesis and metabolism. In a more original way, our proteomic analyses, confirmed by sWGA-enrichment and click-chemistry, revealed that rhoptries, proteins necessary for invasion, are glycosylated. Together, these data show that regardless of proteins strictly specific to organisms, O-GlcNAcylated proteins are rather similar among living beings.

9.
Cell Mol Life Sci ; 75(23): 4417-4443, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30051161

RESUMO

The phylum Apicomplexa encompasses deadly pathogens such as malaria and Cryptosporidium. Apicomplexa cell division is mechanistically divergent from that of their mammalian host, potentially representing an attractive source of drug targets. Depending on the species, apicomplexan parasites can modulate the output of cell division, producing two to thousands of daughter cells at once. The inherent flexibility of their cell division mechanisms allows these parasites to adapt to different niches, facilitating their dissemination. Toxoplasma gondii tachyzoites divide using a unique form of cell division called endodyogeny. This process involves a single round of DNA replication, closed nuclear mitosis, and assembly of two daughter cells within a mother. In higher Eukaryotes, the four-subunit chromosomal passenger complex (CPC) (Aurora kinase B (ARKB)/INCENP/Borealin/Survivin) promotes chromosome bi-orientation by detaching incorrect kinetochore-microtubule attachments, playing an essential role in controlling cell division fidelity. Herein, we report the characterization of the Toxoplasma CPC (Aurora kinase 1 (Ark1)/INCENP1/INCENP2). We show that the CPC exhibits dynamic localization in a cell cycle-dependent manner. TgArk1 interacts with both TgINCENPs, with TgINCENP2 being essential for its translocation to the nucleus. While TgINCENP1 appears to be dispensable, interfering with TgArk1 or TgINCENP2 results in pronounced division and growth defects. Significant anti-cancer drug development efforts have focused on targeting human ARKB. Parasite treatment with low doses of hesperadin, a known inhibitor of human ARKB at higher concentrations, phenocopies the TgArk1 and TgINCENP2 mutants. Overall, our study provides new insights into the mechanisms underpinning cell cycle control in Apicomplexa, and highlights TgArk1 as potential drug target.


Assuntos
Segregação de Cromossomos , Cromossomos/genética , Fuso Acromático/metabolismo , Toxoplasma/genética , Animais , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Cromossomos/metabolismo , Replicação do DNA/genética , Expressão Gênica , Interações Hospedeiro-Parasita , Humanos , Microscopia Eletrônica de Transmissão , Mitose/genética , Toxoplasma/fisiologia , Toxoplasma/ultraestrutura , Toxoplasmose/parasitologia
10.
Nat Rev Microbiol ; 15(11): 645-660, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28867819

RESUMO

Protozoan parasites have developed elaborate motility systems that facilitate infection and dissemination. For example, amoebae use actin-rich membrane extensions called pseudopodia, whereas Kinetoplastida are propelled by microtubule-containing flagella. By contrast, the motile and invasive stages of the Apicomplexa - a phylum that contains the important human pathogens Plasmodium falciparum (which causes malaria) and Toxoplasma gondii (which causes toxoplasmosis) - have a unique machinery called the glideosome, which is composed of an actomyosin system that underlies the plasma membrane. The glideosome promotes substrate-dependent gliding motility, which powers migration across biological barriers, as well as active host cell entry and egress from infected cells. In this Review, we discuss the discovery of the principles that govern gliding motility, the characterization of the molecular machinery involved, and its impact on parasite invasion and egress from infected cells.


Assuntos
Apicomplexa/fisiologia , Movimento Celular , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Membrana Celular/metabolismo , Interações Hospedeiro-Parasita , Humanos , Modelos Biológicos , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/metabolismo , Toxoplasma/fisiologia
11.
Cytoskeleton (Hoboken) ; 74(2): 55-71, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28026138

RESUMO

Toxoplasma gondii is the causative agent of toxoplasmosis. The pathogenicity of this unicellular parasite is tightly linked to its ability to efficiently proliferate within its host. Tachyzoites, the fast dividing form of the parasite, divide by endodyogeny. This process involves a single round of DNA replication, closed nuclear mitosis, and assembly of two daughter cells within a mother. The successful completion of endodyogeny relies on the temporal and spatial coordination of a plethora of simultaneous events. It has been shown that the Toxoplasma centrosome serves as signaling hub which nucleates spindle microtubules during mitosis and organizes the scaffolding of daughter cells components during cytokinesis. In addition, the centrosome is essential for inheriting both the apicoplast (a chloroplast-like organelle) and the Golgi apparatus. A growing body of evidence supports the notion that the T. gondii centrosome diverges in protein composition, structure and organization from its counterparts in higher eukaryotes making it an attractive source of potentially druggable targets. Here, we summarize the current knowledge on T. gondii centrosomal proteins and extend the putative centrosomal protein repertoire by in silico identification of mammalian centrosomal protein orthologs. We propose a working model for the organization and architecture of the centrosome in Toxoplasma parasites. Experimental validation of our proposed model will uncover how each predicted protein translates into the biology of centrosome, cytokinesis, karyokinesis, and organelle inheritance in Toxoplasma parasites.


Assuntos
Centrossomo/fisiologia , Toxoplasma/citologia , Humanos
12.
PLoS One ; 11(7): e0159306, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27458822

RESUMO

Toxoplasma gondii actively invades host cells and establishes a parasitophorous vacuole (PV) that accumulates many proteins secreted by the dense granules (GRA proteins). To date, at least 23 GRA proteins have been reported, though the function(s) of most of these proteins still remains unknown. We targeted gene knockouts at ten GRA gene loci (GRA1-10) to investigate the cellular roles and essentiality of these classical GRA proteins during acute infection in the virulent type I RH strain. While eight of these genes (GRA2-9) were successfully knocked out, targeted knockouts at the GRA1 and GRA10 loci were not obtained, suggesting these GRA proteins may be essential. As expected, the Δgra2 and Δgra6 knockouts failed to form an intravacuolar network (IVN). Surprisingly, Δgra7 exhibited hyper-formation of the IVN in both normal and lipid-free growth conditions. No morphological alterations were identified in parasite or PV structures in the Δgra3, Δgra4, Δgra5, Δgra8, or Δgra9 knockouts. With the exception of the Δgra3 and Δgra8 knockouts, all of the GRA knockouts exhibited defects in their infection rate in vitro. While the single GRA knockouts did not exhibit reduced replication rates in vitro, replication rate defects were observed in three double GRA knockout strains (Δgra4Δgra6, Δgra3Δgra5 and Δgra3Δgra7). However, the virulence of single or double GRA knockout strains in CD1 mice was not affected. Collectively, our results suggest that while the eight individual GRA proteins investigated in this study (GRA2-9) are not essential, several GRA proteins may provide redundant and potentially important functions during acute infection.


Assuntos
Técnicas de Inativação de Genes , Fenótipo , Proteínas de Protozoários/genética , Locos de Características Quantitativas , Toxoplasma/fisiologia , Animais , Deleção de Genes , Ordem dos Genes , Marcação de Genes , Interações Hospedeiro-Parasita , Camundongos , Plasmídeos/genética , Toxoplasma/patogenicidade , Toxoplasma/ultraestrutura , Toxoplasmose/parasitologia , Virulência/genética
13.
Cell Rep ; 13(10): 2273-86, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26628378

RESUMO

Apicomplexa parasites such as Toxoplasma gondii target effectors to and across the boundary of their parasitophorous vacuole (PV), resulting in host cell subversion and potential presentation by MHC class I molecules for CD8 T cell recognition. The host-parasite interface comprises the PV limiting membrane and a highly curved, membranous intravacuolar network (IVN) of uncertain function. Here, using a cell-free minimal system, we dissect how membrane tubules are shaped by the parasite effectors GRA2 and GRA6. We show that membrane association regulates access of the GRA6 protective antigen to the MHC I pathway in infected cells. Although insertion of GRA6 in the PV membrane is key for immunogenicity, association of GRA6 with the IVN limits presentation and curtails GRA6-specific CD8 responses in mice. Thus, membrane deformations of the PV regulate access of antigens to the MHC class I pathway, and the IVN may play a role in immune modulation.


Assuntos
Antígenos de Protozoários/imunologia , Linfócitos T CD8-Positivos/imunologia , Interações Hospedeiro-Parasita/imunologia , Ativação Linfocitária/imunologia , Proteínas de Protozoários/imunologia , Toxoplasmose/imunologia , Animais , Apresentação de Antígeno/imunologia , Western Blotting , Modelos Animais de Doenças , Feminino , Imunofluorescência , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vacúolos/imunologia
14.
Cell Host Microbe ; 18(5): 593-603, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26607162

RESUMO

Plasmodium sporozoites are deposited in the host skin by Anopheles mosquitoes. The parasites migrate from the dermis to the liver, where they invade hepatocytes through a moving junction (MJ) to form a replicative parasitophorous vacuole (PV). Malaria sporozoites need to traverse cells during progression through host tissues, a process requiring parasite perforin-like protein 1 (PLP1). We find that sporozoites traverse cells inside transient vacuoles that precede PV formation. Sporozoites initially invade cells inside transient vacuoles by an active MJ-independent process that does not require vacuole membrane remodeling or release of parasite secretory organelles typically involved in invasion. Sporozoites use pH sensing and PLP1 to exit these vacuoles and avoid degradation by host lysosomes. Next, parasites enter the MJ-dependent PV, which has a different membrane composition, precluding lysosome fusion. The malaria parasite has thus evolved different strategies to evade host cell defense and establish an intracellular niche for replication.


Assuntos
Malária/patologia , Malária/parasitologia , Plasmodium berghei/metabolismo , Plasmodium yoelii/metabolismo , Esporozoítos/patologia , Esporozoítos/parasitologia , Vacúolos/parasitologia , Animais , Anopheles/parasitologia , Células Hep G2 , Hepatócitos/patologia , Hepatócitos/ultraestrutura , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/ultraestrutura , Plasmodium yoelii/crescimento & desenvolvimento , Plasmodium yoelii/ultraestrutura , Proteínas de Protozoários/metabolismo , Esporozoítos/metabolismo , Vacúolos/metabolismo , Vacúolos/ultraestrutura
15.
Cell Microbiol ; 17(1): 62-78, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25088010

RESUMO

Apicomplexa possess a complex pellicle that is composed of a plasma membrane and a closely apposed inner membrane complex (IMC) that serves as a support for the actin-myosin motor required for motility and host cell invasion. The IMC consists of longitudinal plates of flattened vesicles, fused together and lined on the cytoplasmic side by a subpellicular network of intermediate filament-like proteins. The spatial organization of the IMC has been well described by electron microscopy, but its composition and molecular organization is largely unknown. Here, we identify a novel protein of the IMC cytoskeletal network in Toxoplasma gondii, called TgSIP, and conserved among apicomplexan parasites. To finely pinpoint the localization of TgSIP, we used structured illumination super-resolution microscopy and revealed that it likely decorates the transverse sutures of the plates and the basal end of the IMC. This suggests that TgSIP might contribute to the organization or physical connection among the different components of the IMC. We generated a T.gondii SIP deletion mutant and showed that parasites lacking TgSIP are significantly shorter than wild-type parasites and show defects in gliding motility, invasion and reduced infectivity in mice.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Toxoplasma/citologia , Toxoplasma/fisiologia , Animais , Vesículas Citoplasmáticas/química , Proteínas do Citoesqueleto/genética , Deleção de Genes , Locomoção , Camundongos , Microscopia , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Análise de Sobrevida , Toxoplasma/genética , Toxoplasmose Animal/parasitologia , Toxoplasmose Animal/patologia , Virulência
16.
Cell Microbiol ; 17(4): 559-78, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25329540

RESUMO

Phosphoinositides regulate numerous cellular processes by recruiting cytosolic effector proteins and acting as membrane signalling entities. The cellular metabolism and localization of phosphoinositides are tightly regulated by distinct lipid kinases and phosphatases. Here, we identify and characterize a unique phosphatidylinositol 3 kinase (PI3K) in Toxoplasma gondii, a protozoan parasite belonging to the phylum Apicomplexa. Conditional depletion of this enzyme and subsequently of its product, PI(3)P, drastically alters the morphology and inheritance of the apicoplast, an endosymbiotic organelle of algal origin that is a unique feature of many Apicomplexa. We searched the T. gondii genome for PI(3)P-binding proteins and identified in total six PX and FYVE domain-containing proteins including a PIKfyve lipid kinase, which phosphorylates PI(3)P into PI(3,5)P2 . Although depletion of putative PI(3)P-binding proteins shows that they are not essential for parasite growth and apicoplast biology, conditional disruption of PIKfyve induces enlarged apicoplasts, as observed upon loss of PI(3)P. A similar defect of apicoplast homeostasis was also observed by knocking down the PIKfyve regulatory protein ArPIKfyve, suggesting that in T. gondii, PI(3)P-related function for the apicoplast might mainly be to serve as a precursor for the synthesis of PI(3,5)P2 . Accordingly, PI3K is conserved in all apicomplexan parasites whereas PIKfyve and ArPIKfyve are absent in Cryptosporidium species that lack an apicoplast, supporting a direct role of PI(3,5)P2 in apicoplast homeostasis. This study enriches the already diverse functions attributed to PI(3,5)P2 in eukaryotic cells and highlights these parasite lipid kinases as potential drug targets.


Assuntos
Apicoplastos/metabolismo , Apicoplastos/ultraestrutura , Homeostase , Metabolismo dos Lipídeos , Fosfatidilinositol 3-Quinase/metabolismo , Toxoplasma/enzimologia , Toxoplasma/metabolismo , Técnicas de Silenciamento de Genes , Fosfatidilinositol 3-Quinase/genética , Toxoplasma/genética , Toxoplasma/ultraestrutura
17.
Cilia ; 5: 3, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26855772

RESUMO

The phylum Apicomplexa encompasses numerous important human and animal disease-causing parasites, including the Plasmodium species, and Toxoplasma gondii, causative agents of malaria and toxoplasmosis, respectively. Apicomplexans proliferate by asexual replication and can also undergo sexual recombination. Most life cycle stages of the parasite lack flagella; these structures only appear on male gametes. Although male gametes (microgametes) assemble a typical 9+2 axoneme, the structure of the templating basal body is poorly defined. Moreover, the relationship between asexual stage centrioles and microgamete basal bodies remains unclear. While asexual stages of Plasmodium lack defined centriole structures, the asexual stages of Toxoplasma and closely related coccidian apicomplexans contain centrioles that consist of nine singlet microtubules and a central tubule. There are relatively few ultra-structural images of Toxoplasma microgametes, which only develop in cat intestinal epithelium. Only a subset of these include sections through the basal body: to date, none have unambiguously captured organization of the basal body structure. Moreover, it is unclear whether this basal body is derived from pre-existing asexual stage centrioles or is synthesized de novo. Basal bodies in Plasmodium microgametes are thought to be synthesized de novo, and their assembly remains ill-defined. Apicomplexan genomes harbor genes encoding δ- and ε-tubulin homologs, potentially enabling these parasites to assemble a typical triplet basal body structure. Moreover, the UNIMOD components (SAS6, SAS4/CPAP, and BLD10/CEP135) are conserved in these organisms. However, other widely conserved basal body and flagellar biogenesis elements are missing from apicomplexan genomes. These differences may indicate variations in flagellar biogenesis pathways and in basal body arrangement within the phylum. As apicomplexan basal bodies are distinct from their metazoan counterparts, it may be possible to selectively target parasite structures in order to inhibit microgamete motility which drives generation of genetic diversity in Toxoplasma and transmission for Plasmodium.

18.
Dis Model Mech ; 7(7): 871-82, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24973754

RESUMO

Zebrafish embryos and larvae are now well-established models in which to study infectious diseases. Infections with non-pathogenic Gram-negative Escherichia coli induce a strong and reproducible inflammatory response. Here, we study the cellular response of zebrafish larvae when E. coli bacteria are injected into the notochord and describe the effects. First, we provide direct evidence that the notochord is a unique organ that is inaccessible to leukocytes (macrophages and neutrophils) during the early stages of inflammation. Second, we show that notochord infection induces a host response that is characterised by rapid clearance of the bacteria, strong leukocyte recruitment around the notochord and prolonged inflammation that lasts several days after bacteria clearance. During this inflammatory response, il1b is first expressed in macrophages and subsequently at high levels in neutrophils. Moreover, knock down of il1b alters the recruitment of neutrophils to the notochord, demonstrating the important role of this cytokine in the maintenance of inflammation in the notochord. Eventually, infection of the notochord induces severe defects of the notochord that correlate with neutrophil degranulation occurring around this tissue. This is the first in vivo evidence that neutrophils can degranulate in the absence of a direct encounter with a pathogen. Persistent inflammation, neutrophil infiltration and restructuring of the extracellular matrix are defects that resemble those seen in bone infection and in some chondropathies. As the notochord is a transient embryonic structure that is closely related to cartilage and bone and that contributes to vertebral column formation, we propose infection of the notochord in zebrafish larvae as a new model to study the cellular and molecular mechanisms underlying cartilage and bone inflammation.


Assuntos
Infecções por Escherichia coli/embriologia , Escherichia coli/fisiologia , Inflamação/patologia , Notocorda/microbiologia , Notocorda/patologia , Peixe-Zebra/embriologia , Peixe-Zebra/microbiologia , Animais , Doença Crônica , Embrião não Mamífero/microbiologia , Embrião não Mamífero/patologia , Escherichia coli/ultraestrutura , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/patologia , Proteínas de Fluorescência Verde/metabolismo , Inflamação/microbiologia , Interleucina-1beta/metabolismo , Larva/microbiologia , Larva/ultraestrutura , Macrófagos/patologia , Infiltração de Neutrófilos , Neutrófilos/patologia , Notocorda/ultraestrutura , Fagocitose , Coluna Vertebral/embriologia , Coluna Vertebral/patologia
19.
Antimicrob Agents Chemother ; 58(5): 2586-97, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24550329

RESUMO

A piperidinyl-benzimidazolone scaffold has been found in the structure of different inhibitors of membrane glycerolipid metabolism, acting on enzymes manipulating diacylglycerol and phosphatidic acid. Screening a focus library of piperidinyl-benzimidazolone analogs might therefore identify compounds acting against infectious parasites. We first evaluated the in vitro effects of (S)-2-(dibenzylamino)-3-phenylpropyl 4-(1,2-dihydro-2-oxobenzo[d]imidazol-3-yl)piperidine-1-carboxylate (compound 1) on Toxoplasma gondii and Plasmodium falciparum. In T. gondii, motility and apical complex integrity appeared to be unaffected, whereas cell division was inhibited at compound 1 concentrations in the micromolar range. In P. falciparum, the proliferation of erythrocytic stages was inhibited, without any delayed death phenotype. We then explored a library of 250 analogs in two steps. We selected 114 compounds with a 50% inhibitory concentration (IC50) cutoff of 2 µM for at least one species and determined in vitro selectivity indexes (SI) based on toxicity against K-562 human cells. We identified compounds with high gains in the IC50 (in the 100 nM range) and SI (up to 1,000 to 2,000) values. Isobole analyses of two of the most active compounds against P. falciparum indicated that their interactions with artemisinin were additive. Here, we propose the use of structure-activity relationship (SAR) models, which will be useful for designing probes to identify the target compound(s) and optimizations for monotherapy or combined-therapy strategies.


Assuntos
Benzimidazóis/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Toxoplasma/efeitos dos fármacos , Antiprotozoários/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade
20.
PLoS One ; 9(1): e85386, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24489660

RESUMO

Glycosylphosphatidylinositols (GPIs) from several protozoan parasites are thought to elicit a detrimental stimulation of the host innate immune system aside their main function to anchor surface proteins. Here we analyzed the GPI biosynthesis of an avirulent Toxoplasma gondii type 2 strain (PTG) by metabolic radioactive labeling. We determined the biological function of individual GPI species in the PTG strain in comparison with previously characterized GPI-anchors of a virulent strain (RH). The GPI intermediates of both strains were structurally similar, however the abundance of two of six GPI intermediates was significantly reduced in the PTG strain. The side-by-side comparison of GPI-anchor content revealed that the PTG strain had only ∼ 34% of the protein-free GPIs as well as ∼ 70% of the GPI-anchored proteins with significantly lower rates of protein N-glycosylation compared to the RH strain. All mature GPIs from both strains induced comparable secretion levels of TNF-α and IL-12p40, and initiated TLR4/MyD88-dependent NF-κBp65 activation in macrophages. Taken together, these results demonstrate that PTG and RH strains differ in their GPI biosynthesis and possess significantly different GPI-anchor content, while individual GPI species of both strains induce similar biological functions in macrophages.


Assuntos
Glicosilfosfatidilinositóis/metabolismo , Macrófagos/parasitologia , Toxoplasma/metabolismo , Toxoplasma/patogenicidade , Animais , Linhagem Celular , Chlorocebus aethiops , Subunidade p40 da Interleucina-12/metabolismo , Camundongos , Fator de Necrose Tumoral alfa/metabolismo , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA