RESUMO
Potentially toxic plasticizers are commonly added to polyvinyl chloride medical devices for transfusion in order to improve their flexibility and workability. As the plasticizers are not chemically bonded to the PVC, they can be released into labile blood products (LBPs) during storage. Ideally, LBPs would be used in laboratory studies of plasticizer migration from the medical device. However, short supply (i.e., limited stocks of human blood in collection centres) has prompted the development of specific simulants for each type of LBP in the evaluation of new transfusion devices. We performed a Delphi study with a multidisciplinary panel of 24 experts. In the first (qualitative) phase, the panel developed consensus definitions of the specification criteria to be met by each migration simulant. Next, we reviewed the literature on techniques for simulating the migration of plasticizers into LBPs. A questionnaire was elaborated and sent out to the experts, and the replies were synthesized in order to obtain a consensus. The qualitative study established specifications for each biological matrix (whole blood, red blood cell concentrate, plasma, and platelet concentrate) and defined the criteria required for a suitable LBP simulant. Ten criteria were suggested: physical and chemical characteristics, opacity, form, stability, composition, ability to mimic a particular clinical situation, ease and safety of use, a simulant-plastic interaction correlated with blood, and compatibility with analytical methods. The questionnaire data revealed a consensus on the use of natural products (such as pig's blood) to mimic the four LBPs. Opinions diverged with regard to synthetic products. However, an isotonic solution and a rheological property modifier were considered to be of value in the design of synthetic simulants. Consensus reached by the Delphi group could be used as a database for the development of simulants used to assess the migration of plasticizers from PVC bags into LBPs.
Assuntos
Células Sanguíneas/citologia , Preservação de Sangue/instrumentação , Plastificantes/química , Bancos de Sangue , Plaquetas/citologia , Preservação de Sangue/métodos , Transfusão de Sangue/instrumentação , Transfusão de Sangue/métodos , Técnica Delphi , Eritrócitos/citologia , Hematologia/normas , Humanos , Concentração de Íons de Hidrogênio , Comunicação Interdisciplinar , Teste de Materiais , Plasma/citologia , Cloreto de Polivinila/química , Propriedades de Superfície , Inquéritos e Questionários , ViscosidadeRESUMO
Bacterial contamination of platelet concentrates (PCs) can lead to fatal transfusion transmitted diseases and is the most abundant infectious risk in transfusion medicine. The storage conditions of PCs provide a good environment for bacterial growth. The detection of these contaminations at an early stage is therefore important to avoid the transfusion of contaminated samples. In this study, bioresponsive polymer (BRP) systems were used for the detection of microorganisms in PCs. The backbone of the polymer consisted of labelled protein (casein), which was demonstrated to be degraded by pure proteases as models and by extracellular enzymes released by contaminating microorganisms. The concomitant colour change was easily visible to the naked eye. To enhance stability, the protein was cross-linked with glycidyl methacrylate (GMA). The cross-linked polymer was easier to handle but was less sensitive than the non-cross-linked material. A contamination of a PC with 10CFU/mL S. aureus was detectable after 24 hours. The visible colour reaction was quantified as a ΔE value according to the CIELab concept. A ΔE value of 21.8 was already reached after 24 hours. Hence, this simple but effective system could prevent transfusion of a contaminated PC.