Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2354: 387-399, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34448171

RESUMO

Potato is a major global crop that has an important role to play in food security, reducing poverty and improving human nutrition. Productivity in potato however is limited in many environments by its sensitivity to abiotic stresses such as elevated temperature, drought, frost, and salinity. In this chapter we focus on the effects of elevated temperature on potato yields as high temperature is the most important uncontrollable factor affecting growth and yield of potato. We describe some of the physiological impacts of elevated temperature and review recent findings about response mechanisms. We describe genetic approaches that could be used to identify allelic variants of genes that may be useful to breed for increased climate resilience, an approach that could be deployed with recent advances in potato breeding.


Assuntos
Solanum tuberosum , Secas , Temperatura Alta , Salinidade , Solanum tuberosum/genética , Estresse Fisiológico
2.
Front Plant Sci ; 11: 753, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760410

RESUMO

Potato, S. tuberosum, is one of the most important global crops, but has high levels of waste due to tuber greening under light, which is associated with the accumulation of neurotoxic glycoalkaloids. However, unlike the situation in de-etiolating seedlings, the mechanisms underlying tuber greening are not well understood. Here, we have investigated the effect of monochromatic blue, red, and far-red light on the regulation of chlorophyll and glycoalkaloid accumulation in potato tubers. Blue and red wavelengths were effective for induction and accumulation of chlorophyll, carotenoids and the two major potato glycoalkaloids, α-solanine and α-chaconine, whereas none of these accumulated in darkness or under far-red light. Key genes in chlorophyll biosynthesis (HEMA1, encoding the rate-limiting enzyme glutamyl-tRNA reductase, GSA, CHLH and GUN4) and six genes (HMG1, SQS, CAS1, SSR2, SGT1 and SGT2) required for glycoalkaloid synthesis were also induced under white, blue, and red light but not in darkness or under far-red light. These data suggest a role for both cryptochrome and phytochrome photoreceptors in chlorophyll and glycoalkaloid accumulation. The contribution of phytochrome was further supported by the observation that far-red light could inhibit white light-induced chlorophyll and glycoalkaloid accumulation and associated gene expression. Transcriptomic analysis of tubers exposed to white, blue, and red light showed that light induction of photosynthesis and tetrapyrrole-related genes grouped into three distinct groups with one group showing a generally progressive induction by light at both 6 h and 24 h, a second group showing induction at 6 h in all light treatments, but induction only by red and white light at 24 h and a third showing just a very moderate light induction at 6 h which was reduced to the dark control level at 24 h. All glycoalkaloid synthesis genes showed a group one profile consistent with what was seen for the most light regulated chlorophyll synthesis genes. Our data provide a molecular framework for developing new approaches to reducing waste due to potato greening.

3.
Plant J ; 103(6): 2263-2278, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32593210

RESUMO

Potato tuber formation is a secondary developmental programme by which cells in the subapical stolon region divide and radially expand to further differentiate into starch-accumulating parenchyma. Although some details of the molecular pathway that signals tuberisation are known, important gaps in our knowledge persist. Here, the role of a member of the TERMINAL FLOWER 1/CENTRORADIALIS gene family (termed StCEN) in the negative control of tuberisation is demonstrated for what is thought to be the first time. It is shown that reduced expression of StCEN accelerates tuber formation whereas transgenic lines overexpressing this gene display delayed tuberisation and reduced tuber yield. Protein-protein interaction studies (yeast two-hybrid and bimolecular fluorescence complementation) demonstrate that StCEN binds components of the recently described tuberigen activation complex. Using transient transactivation assays, we show that the StSP6A tuberisation signal is an activation target of the tuberigen activation complex, and that co-expression of StCEN blocks activation of the StSP6A gene by StFD-Like-1. Transcriptomic analysis of transgenic lines misexpressing StCEN identifies early transcriptional events in tuber formation. These results demonstrate that StCEN suppresses tuberisation by directly antagonising the function of StSP6A in stolons, identifying StCEN as a breeding marker to improve tuber initiation and yield through the selection of genotypes with reduced StCEN expression.


Assuntos
Proteínas de Plantas/fisiologia , Tubérculos/crescimento & desenvolvimento , Solanum tuberosum/crescimento & desenvolvimento , Genes de Plantas , Proteínas de Plantas/metabolismo , Tubérculos/metabolismo , Plantas Geneticamente Modificadas , Solanum tuberosum/metabolismo , Transcriptoma
4.
Front Plant Sci ; 11: 169, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32184796

RESUMO

Potato production is often constrained by abiotic stresses such as drought and high temperatures which are often present in combination. In the present work, we aimed to identify key mechanisms and processes underlying single and combined abiotic stress tolerance by comparative analysis of tolerant and susceptible cultivars. Physiological data indicated that the cultivars Desiree and Unica were stress tolerant while Agria and Russett Burbank were stress susceptible. Abiotic stress caused a greater reduction of photosynthetic carbon assimilation in the susceptible cultivars which was associated with a lower leaf transpiration rate. Oxidative stress, as estimated by the accumulation of malondialdehyde was not induced by stress treatments in any of the genotypes with the exception of drought stress in Russett Burbank. Stress treatment resulted in increases in ascorbate peroxidase activity in all cultivars except Agria which increased catalase activity in response to stress. Transcript profiling highlighted a decrease in the abundance of transcripts encoding proteins associated with PSII light harvesting complex in stress tolerant cultivars. Furthermore, stress tolerant cultivars accumulated fewer transcripts encoding a type-1 metacaspase implicated in programmed cell death. Stress tolerant cultivars exhibited stronger expression of genes associated with plant growth and development, hormone metabolism and primary and secondary metabolism than stress susceptible cultivars. Metabolite profiling revealed accumulation of proline in all genotypes following drought stress that was partially suppressed in combined heat and drought. On the contrary, the sugar alcohols inositol and mannitol were strongly accumulated under heat and combined heat and drought stress while galactinol was most strongly accumulated under drought. Combined heat and drought also resulted in the accumulation of Valine, isoleucine, and lysine in all genotypes. These data indicate that single and multiple abiotic stress tolerance in potato is associated with a maintenance of CO2 assimilation and protection of PSII by a reduction of light harvesting capacity. The data further suggests that stress tolerant cultivars suppress cell death and maintain growth and development via fine tuning of hormone signaling, and primary and secondary metabolism. This study highlights potential targets for the development of stress tolerant potato cultivars.

5.
J Exp Bot ; 70(20): 5703-5714, 2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31328229

RESUMO

For many potato cultivars, tuber yield is optimal at average daytime temperatures in the range 14-22 °C. Above this range, tuber yield is reduced for most cultivars. We previously reported that moderately elevated temperature increases steady-state expression of the core circadian clock gene TIMING OF CAB EXPRESSION 1 (StTOC1) in developing tubers, whereas expression of the StSP6A tuberization signal is reduced, along with tuber yield. In this study we provide evidence that StTOC1 links environmental signalling with potato tuberization by suppressing StSP6A autoactivation in the stolons. We show that transgenic lines silenced in StTOC1 expression exhibit enhanced StSP6A transcript levels and changes in gene expression in developing tubers that are indicative of an elevated sink strength. Nodal cuttings of StTOC1 antisense lines displayed increased tuber yields at moderately elevated temperatures, whereas tuber yield and StSP6A expression were reduced in StTOC1 overexpressor lines. Here we identify a number of StTOC1 binding partners and demonstrate that suppression of StSP6A expression is independent of StTOC1 complex formation with the potato homolog StPIF3. Down-regulation of StTOC1 thus provides a strategy to mitigate the effects of elevated temperature on tuber yield.


Assuntos
Proteínas de Plantas/metabolismo , Tubérculos/fisiologia , Solanum tuberosum/fisiologia , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Temperatura Alta , Proteínas de Plantas/genética , Tubérculos/genética , Solanum tuberosum/genética , Temperatura
6.
Planta ; 247(6): 1393, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29725816

RESUMO

The article A reversible light- and genotype-dependent acquired thermotolerance response protects the potato plant from damage due to excessive temperature, written by Almudena Trapero-Mozos, Laurence J. M. Ducreux, Craita E. Bita, Wayne Morris, Cosima Wiese, Jenny A. Morris, Christy Paterson, Peter E. Hedley, Robert D. Hancock, and Mark Taylor, was originally published electronically on the publisher's internet portal (currently SpringerLink) on 8 March 2018 without open access. With the author(s)' decision to opt for Open Choice the copyright of the article changed on 30 April 2018 to © The Author(s) 2018 and the article is forthwith distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.The â€‹original â€‹article â€‹has â€‹been â€‹corrected.

7.
Planta ; 247(6): 1377-1392, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29520461

RESUMO

MAIN CONCLUSION: A powerful acquired thermotolerance response in potato was demonstrated and characterised in detail, showing the time course required for tolerance, the reversibility of the process and requirement for light. Potato is particularly vulnerable to increased temperature, considered to be the most important uncontrollable factor affecting growth and yield of this globally significant crop. Here, we describe an acquired thermotolerance response in potato, whereby treatment at a mildly elevated temperature primes the plant for more severe heat stress. We define the time course for acquiring thermotolerance and demonstrate that light is essential for the process. In all four commercial tetraploid cultivars that were tested, acquisition of thermotolerance by priming was required for tolerance at elevated temperature. Accessions from several wild-type species and diploid genotypes did not require priming for heat tolerance under the test conditions employed, suggesting that useful variation for this trait exists. Physiological, transcriptomic and metabolomic approaches were employed to elucidate potential mechanisms that underpin the acquisition of heat tolerance. This analysis indicated a role for cell wall modification, auxin and ethylene signalling, and chromatin remodelling in acclimatory priming resulting in reduced metabolic perturbation and delayed stress responses in acclimated plants following transfer to 40 °C.


Assuntos
Resposta ao Choque Térmico , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Solanum tuberosum/fisiologia , Termotolerância , Parede Celular/metabolismo , Montagem e Desmontagem da Cromatina , Eletrólitos/metabolismo , Etilenos/metabolismo , Perfilação da Expressão Gênica , Genótipo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico/genética , Resposta ao Choque Térmico/efeitos da radiação , Temperatura Alta , Ácidos Indolacéticos/metabolismo , Metabolômica , Oxirredução , Fenótipo , Proteínas de Plantas/genética , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiação , Solanum tuberosum/genética , Solanum tuberosum/efeitos da radiação , Termotolerância/genética , Termotolerância/efeitos da radiação
8.
Plant Biotechnol J ; 16(1): 197-207, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28509353

RESUMO

For many commercial potato cultivars, tuber yield is optimal at average daytime temperatures in the range of 14-22 °C. Further rises in ambient temperature can reduce or completely inhibit potato tuber production, with damaging consequences for both producer and consumer. The aim of this study was to use a genetic screen based on a model tuberization assay to identify quantitative trait loci (QTL) associated with enhanced tuber yield. A candidate gene encoding HSc70 was identified within one of the three QTL intervals associated with elevated yield in a Phureja-Tuberosum hybrid diploid potato population (06H1). A particular HSc70 allelic variant was linked to elevated yield in the 06H1 progeny. Expression of this allelic variant was much higher than other alleles, particularly on exposure to moderately elevated temperature. Transient expression of this allele in Nicotiana benthamiana resulted in significantly enhanced tolerance to elevated temperature. An TA repeat element was present in the promoter of this allele, but not in other HSc70 alleles identified in the population. Expression of the HSc70 allelic variant under its native promoter in the potato cultivar Desiree resulted in enhanced HSc70 expression at elevated temperature. This was reflected in greater tolerance to heat stress as determined by improved yield under moderately elevated temperature in a model nodal cutting tuberization system and in plants grown from stem cuttings. Our results identify HSc70 expression level as a significant factor influencing yield stability under moderately elevated temperature and identify specific allelic variants of HSc70 for the induction of thermotolerance via conventional introgression or molecular breeding approaches.


Assuntos
Resposta ao Choque Térmico/fisiologia , Proteínas de Plantas/metabolismo , Solanum tuberosum/metabolismo , Alelos , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Choque Térmico HSC70/genética , Proteínas de Choque Térmico HSC70/metabolismo , Resposta ao Choque Térmico/genética , Proteínas de Plantas/genética , Locos de Características Quantitativas/genética , Solanum tuberosum/genética , Temperatura
9.
Plant Sci ; 234: 27-37, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25804807

RESUMO

Astaxanthin is a high value carotenoid produced by some bacteria, a few green algae, several fungi but only a limited number of plants from the genus Adonis. Astaxanthin has been industrially exploited as a feed supplement in poultry farming and aquaculture. Consumption of ketocarotenoids, most notably astaxanthin, is also increasingly associated with a wide range of health benefits, as demonstrated in numerous clinical studies. Currently astaxanthin is produced commercially by chemical synthesis or from algal production systems. Several studies have used a metabolic engineering approach to produce astaxanthin in transgenic plants. Previous attempts to produce transgenic potato tubers biofortified with astaxanthin have met with limited success. In this study we have investigated approaches to optimising tuber astaxanthin content. It is demonstrated that the selection of appropriate parental genotype for transgenic approaches and stacking carotenoid biosynthetic pathway genes with the cauliflower Or gene result in enhanced astaxanthin content, to give six-fold higher tuber astaxanthin content than has been achieved previously. Additionally we demonstrate the effects of growth environment on tuber carotenoid content in both wild type and astaxanthin-producing transgenic lines and describe the associated transcriptome and metabolome restructuring.


Assuntos
Carotenoides/metabolismo , Solanum tuberosum/genética , Carotenoides/química , Meio Ambiente , Patrimônio Genético , Engenharia Metabólica , Metaboloma , Tubérculos/química , Tubérculos/genética , Tubérculos/metabolismo , Plantas Geneticamente Modificadas , Solanum tuberosum/química , Solanum tuberosum/metabolismo , Transcriptoma , Transgenes , Xantofilas/química , Xantofilas/metabolismo
10.
Plant Cell Environ ; 37(2): 439-50, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23889235

RESUMO

Although significant work has been undertaken regarding the response of model and crop plants to heat shock during the acclimatory phase, few studies have examined the steady-state response to the mild heat stress encountered in temperate agriculture. In the present work, we therefore exposed tuberizing potato plants to mildly elevated temperatures (30/20 °C, day/night) for up to 5 weeks and compared tuber yield, physiological and biochemical responses, and leaf and tuber metabolomes and transcriptomes with plants grown under optimal conditions (22/16 °C). Growth at elevated temperature reduced tuber yield despite an increase in net foliar photosynthesis. This was associated with major shifts in leaf and tuber metabolite profiles, a significant decrease in leaf glutathione redox state and decreased starch synthesis in tubers. Furthermore, growth at elevated temperature had a profound impact on leaf and tuber transcript expression with large numbers of transcripts displaying a rhythmic oscillation at the higher growth temperature. RT-PCR revealed perturbation in the expression of circadian clock transcripts including StSP6A, previously identified as a tuberization signal. Our data indicate that potato plants grown at moderately elevated temperatures do not exhibit classic symptoms of abiotic stress but that tuber development responds via a diversity of biochemical and molecular signals.


Assuntos
Resposta ao Choque Térmico , Solanum tuberosum/metabolismo , Temperatura , Processamento Alternativo , Carbono/metabolismo , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Regulação da Expressão Gênica de Plantas , Metaboloma , Oxirredução , Fotossíntese , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/fisiologia
11.
Plant Cell Environ ; 37(6): 1351-63, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24236539

RESUMO

Recent advances have defined some of the components of photoperiodic signalling that lead to tuberization in potato including orthologues of FLOWERING LOCUS T (StSP6A) and CYCLING DOF FACTOR (StCDF1). The aim of the current study is to investigate the molecular basis of permissive tuber initiation under long days in Solanum tuberosum Neo-Tuberosum by comparative analysis with an obligate short-day S. tuberosum ssp. Andigena accession. We show that the Neo-Tuberosum accession, but not the Andigena, contains alleles that encode StCDF1 proteins modified in the C-terminal region, likely to evade long day inhibition of StSP6A expression. We also identify an allele of StSP6A from the Neo-Tuberosum accession, absent in the Andigena, which is expressed under long days. Other leaf transcripts and metabolites that show different abundances in tuberizing and non-tuberizing samples were identified adding detail to tuberization-associated processes. Overall, the data presented in this study highlight the subtle interplay between components of the clock-CONSTANS-StSP6A axis which collectively may interact to fine-tune the timing of tuberization.


Assuntos
Fotoperíodo , Tubérculos/metabolismo , Solanum tuberosum/metabolismo , Transcriptoma , Sequência de Aminoácidos , Genótipo , Metaboloma , Dados de Sequência Molecular , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Tubérculos/genética , Tubérculos/crescimento & desenvolvimento , Polimorfismo Genético , Alinhamento de Sequência , Solanum tuberosum/genética , Solanum tuberosum/crescimento & desenvolvimento
12.
New Phytol ; 198(4): 1108-1120, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23496288

RESUMO

· Strigolactones (SLs) are a class of phytohormones controlling shoot branching. In potato (Solanum tuberosum), tubers develop from underground stolons, diageotropic stems which originate from basal stem nodes. As the degree of stolon branching influences the number and size distribution of tubers, it was considered timely to investigate the effects of SL production on potato development and tuber life cycle. · Transgenic potato plants were generated in which the CAROTENOID CLEAVAGE DIOXYGENASE8 (CCD8) gene, key in the SL biosynthetic pathway, was silenced by RNA interference (RNAi). · The resulting CCD8-RNAi potato plants showed significantly more lateral and main branches than control plants, reduced stolon formation, together with a dwarfing phenotype and a lack of flowering in the most severely affected lines. New tubers were formed from sessile buds of the mother tubers. The apical buds of newly formed transgenic tubers grew out as shoots when exposed to light. In addition, we found that CCD8 transcript levels were rapidly downregulated in tuber buds by the application of sprout-inducing treatments. · These results suggest that SLs could have an effect, solely or in combination with other phytohormones, in the morphology of potato plants and also in controlling stolon development and maintaining tuber dormancy.


Assuntos
Proteínas de Plantas/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/genética , Tubérculos/crescimento & desenvolvimento , Tubérculos/genética , Solanum tuberosum/enzimologia , Solanum tuberosum/genética , Compostos de Benzil/farmacologia , Carotenoides/metabolismo , Clorofila/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Giberelinas/farmacologia , Lactonas/metabolismo , Lactonas/farmacologia , Fenótipo , Dormência de Plantas/efeitos dos fármacos , Dormência de Plantas/genética , Proteínas de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Caules de Planta/efeitos dos fármacos , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Tubérculos/efeitos dos fármacos , Purinas/farmacologia , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Solanum tuberosum/efeitos dos fármacos , Solanum tuberosum/crescimento & desenvolvimento
13.
Phytochemistry ; 72(18): 2288-93, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21911234

RESUMO

Potato flavour is a complex trait resulting from the presence of a combination of volatile and non-volatile compounds. The aim of this work was to investigate the effect of specifically altering the volatile content of tubers and assess its impact on flavour. Tuber-specific over-expression of a potato α-copaene synthase gene resulted in enhanced levels (up to 15-fold higher than controls) of the sesquiterpene α-copaene. A positive correlation (R(2)=0.8) between transgene expression level and α-copaene abundance was observed. No significant changes in the levels of volatiles other than α-copaene were detected. Non-volatile flavour compounds (sugars, glycoalkaloids, major umami amino acids and 5'-ribonucleotides) were also determined. Relationships between flavour compounds and sensory evaluation data were investigated. Evaluators could not detect any aroma differences in the transgenic samples compared with controls and no significant differences in taste attributes were found. Thus although successful engineering of potato tubers to accumulate high levels of the flavour volatile α-copaene was achieved, sensory analysis suggests that α-copaene is not a major component of potato flavour.


Assuntos
Sesquiterpenos/metabolismo , Solanum tuberosum/metabolismo , Alcaloides/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/metabolismo , Solanum tuberosum/genética , Paladar
14.
Plant Biotechnol J ; 9(8): 848-56, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21281424

RESUMO

Although processed potato tuber texture is an important trait that influences consumer preference, a detailed understanding of tuber textural properties at the molecular level is lacking. Previous work has identified tuber pectin methyl esterase (PME) activity as a potential factor impacting on textural properties, and the expression of a gene encoding an isoform of PME (PEST1) was associated with cooked tuber textural properties. In this study, a transgenic approach was undertaken to investigate further the impact of the PEST1 gene. Antisense and over-expressing potato lines were generated. In over-expressing lines, tuber PME activity was enhanced by up to 2.3-fold; whereas in antisense lines, PME activity was decreased by up to 62%. PME isoform analysis indicated that the PEST1 gene encoded one isoform of PME. Analysis of cell walls from tubers from the over-expressing lines indicated that the changes in PME activity resulted in a decrease in pectin methylation. Analysis of processed tuber texture demonstrated that the reduced level of pectin methylation in the over-expressing transgenic lines was associated with a firmer processed texture. Thus, there is a clear link between PME activity, pectin methylation and processed tuber textural properties.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Regulação Enzimológica da Expressão Gênica , Engenharia Genética/métodos , Tubérculos/fisiologia , Solanum tuberosum/genética , Agrobacterium tumefaciens/genética , Hidrolases de Éster Carboxílico/genética , Parede Celular/metabolismo , Ativação Enzimática , Manipulação de Alimentos , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Vetores Genéticos/genética , Isoenzimas/metabolismo , Metilação , Análise de Sequência com Séries de Oligonucleotídeos , Pectinas/genética , Pectinas/metabolismo , Tubérculos/genética , Tubérculos/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/fisiologia , Solanum tuberosum/metabolismo , Solanum tuberosum/fisiologia , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Transgenes
15.
Plant Physiol ; 154(2): 656-64, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20688977

RESUMO

The factors that regulate storage organ carotenoid content remain to be fully elucidated, despite the nutritional and economic importance of this class of compound. Recent findings suggest that carotenoid pool size is determined, at least in part, by the activity of carotenoid cleavage dioxygenases. The aim of this study was to investigate whether Carotenoid Cleavage Dioxygenase4 (CCD4) activity affects potato (Solanum tuberosum) tuber carotenoid content. Microarray analysis revealed elevated expression of the potato CCD4 gene in mature tubers from white-fleshed cultivars compared with higher carotenoid yellow-fleshed tubers. The expression level of the potato CCD4 gene was down-regulated using an RNA interference (RNAi) approach in stable transgenic lines. Down-regulation in tubers resulted in an increased carotenoid content, 2- to 5-fold higher than in control plants. The increase in carotenoid content was mainly due to elevated violaxanthin content, implying that this carotenoid may act as the in vivo substrate. Although transcript level was also reduced in plant organs other than tubers, such as leaves, stems, and roots , there was no change in carotenoid content in these organs. However, carotenoid levels were elevated in flower petals from RNAi lines. As well as changes in tuber carotenoid content, tubers from RNAi lines exhibited phenotypes such as heat sprouting, formation of chain tubers, and an elongated shape. These results suggest that the product of the CCD4 reaction may be an important factor in tuber heat responses.


Assuntos
Carotenoides/análise , Proteínas de Plantas/metabolismo , Solanum tuberosum/enzimologia , Ácido Abscísico/análise , Regulação para Baixo , Regulação da Expressão Gênica de Plantas , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Plantas/genética , Tubérculos/enzimologia , Tubérculos/genética , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Interferência de RNA , RNA de Plantas/genética , Solanum tuberosum/genética
16.
J Exp Bot ; 61(4): 1225-38, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20110266

RESUMO

Anthocyanin content of potato tubers is a trait that is attracting increasing attention as the potential nutritional benefits of this class of compound become apparent. However, our understanding of potato tuber anthocyanin accumulation is not complete. The aim of this study was to use a potato microarray to investigate gene expression patterns associated with the accumulation of purple tuber anthocyanins. The advanced potato selections, CO97216-3P/PW and CO97227-2P/PW, developed by conventional breeding procedures, produced tubers with incomplete expression of tuber flesh pigmentation. This feature permits sampling pigmented and non-pigmented tissues from the same tubers, in essence, isolating the factors responsible for pigmentation from confounding genetic, environmental, and developmental effects. An examination of the transcriptome, coupled with metabolite data from purple pigmented sectors and from non-pigmented sectors of the same tuber, was undertaken to identify these genes whose expression correlated with elevated or altered polyphenol composition. Combined with a similar study using eight other conventional cultivars and advanced selections with different pigmentation, it was possible to produce a refined list of only 27 genes that were consistently differentially expressed in purple tuber tissues compared with white. Within this list are several new candidate genes that are likely to impact on tuber anthocyanin accumulation, including a gene encoding a novel single domain MYB transcription factor.


Assuntos
Antocianinas/biossíntese , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Solanum tuberosum/metabolismo , Flavonoides/biossíntese , Dados de Sequência Molecular , Proteínas de Plantas/metabolismo , Tubérculos/genética , Tubérculos/metabolismo , Solanum tuberosum/genética
17.
J Exp Bot ; 59(15): 4219-31, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18987392

RESUMO

Quality traits such as flavour and texture are assuming a greater importance in crop breeding programmes. This study takes advantage of potato germplasm differentiated in tuber flavour and texture traits. A recently developed 44,000-element potato microarray was used to identify tuber gene expression profiles that correspond to differences in tuber flavour and texture as well as carotenoid content and dormancy characteristics. Gene expression was compared in two Solanum tuberosum group Phureja cultivars and two S. tuberosum group Tuberosum cultivars; 309 genes were significantly and consistently up-regulated in Phureja, whereas 555 genes were down-regulated. Approximately 46% of the genes in these lists can be identified from their annotation and amongst these are candidates that may underpin the Phureja/Tuberosum trait differences. For example, a clear difference in the cooked tuber volatile profile is the higher level of the sesquiterpene alpha-copaene in Phureja compared with Tuberosum. A sesquiterpene synthase gene was identified as being more highly expressed in Phureja tubers and its corresponding full-length cDNA was demonstrated to encode alpha-copaene synthase. Other potential 'flavour genes', identified from their differential expression profiles, include those encoding branched-chain amino acid aminotransferase and a ribonuclease suggesting a mechanism for 5'-ribonucleotide formation in potato tubers on cooking. Major differences in the expression levels of genes involved in cell wall biosynthesis (and potentially texture) were also identified, including genes encoding pectin acetylesterase, xyloglucan endotransglycosylase and pectin methylesterase. Other gene expression differences that may impact tuber carotenoid content and tuber life-cycle phenotypes are discussed.


Assuntos
Perfilação da Expressão Gênica , Tubérculos/genética , Característica Quantitativa Herdável , Solanum tuberosum/genética , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Carotenoides/metabolismo , Regulação da Expressão Gênica de Plantas , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubérculos/metabolismo , Solanum tuberosum/classificação , Solanum tuberosum/metabolismo
18.
J Agric Food Chem ; 55(23): 9627-33, 2007 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-17944535

RESUMO

Vegetable flavor is an important factor in consumer choice but a trait that is difficult to assess quantitatively. The purpose of this study was to assess the levels of the major umami compounds in boiled potato tubers, in cultivars previously assessed for sensory quality. The free levels of the major umami amino acids, glutamate and aspartate, and the 5'-nucleotides, GMP and AMP, were measured in potato samples during the cooking process. Tubers were sampled at several time points during the growing season. The levels of both glutamate and 5'-nucleotides were significantly higher in mature tubers of two Solanum phureja cultivars compared with two Solanum tuberosum cultivars. The equivalent umami concentration was calculated for five cultivars, and there were strong positive correlations with flavor attributes and acceptability scores from a trained evaluation panel, suggesting that umami is an important component of potato flavor.


Assuntos
Ácido Aspártico/análise , Ácido Glutâmico/análise , Tubérculos/química , Solanum tuberosum/química , Paladar , Monofosfato de Adenosina/análise , Guanosina Monofosfato/análise , Humanos , Tubérculos/crescimento & desenvolvimento
19.
J Exp Bot ; 57(12): 3007-18, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16873449

RESUMO

Potato tubers were engineered to express a bacterial gene encoding 1-deoxy-D-xylulose 5-phosphate synthase (DXS) in order to investigate the effects of perturbation of isoprenoid biosynthesis. Twenty-four independent transgenic lines out of 38 generated produced tubers with significantly elongated shape that also exhibited an early tuber sprouting phenotype. Expression analysis of nine transgenic lines (four exhibiting the phenotype and five showing a wild-type phenotype) demonstrated that the phenotype was strongly associated with dxs expression. At harvest, apical bud growth had already commenced in dxs-expressing tubers whereas in control lines no bud growth was evident until dormancy was released after 56-70 d of storage. The initial phase of bud growth in dxs tubers was followed by a lag period of approximately 56 d, before further elongation of the developing sprouts could be detected. Thus dxs expression results in the separation of distinct phases in the dormancy and sprouting processes. In order to account for the sprouting phenotype, the levels of plastid-derived isoprenoid growth regulators were measured in transgenic and control tubers. The major difference measured was an increase in the level of trans-zeatin riboside in tubers at harvest expressing dxs. Additionally, compared with controls, in some dxs-expressing lines, tuber carotenoid content increased approximately 2-fold, with most of the increase accounted for by a 6-7-fold increase in phytoene.


Assuntos
Proteínas de Bactérias/metabolismo , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/genética , Terpenos/metabolismo , Transferases/metabolismo , Ácido Abscísico/metabolismo , Alquil e Aril Transferases/metabolismo , Carotenoides/metabolismo , Citocininas/metabolismo , Geranil-Geranildifosfato Geranil-Geraniltransferase , Giberelinas/metabolismo , Oxirredutases/metabolismo , Fenótipo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Tubérculos/genética , Tubérculos/crescimento & desenvolvimento , Tubérculos/metabolismo , Plantas Geneticamente Modificadas/anatomia & histologia , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Plastídeos/metabolismo , Solanum tuberosum/metabolismo , Transferases/genética , Regulação para Cima
20.
Metab Eng ; 8(3): 253-63, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16542864

RESUMO

Consumption of astaxanthin is increasingly associated with a range of health benefits. Attempts to engineer ketocarotenoid biosynthesis in plants have been successful although there are no reports of nutritionally significant levels of astaxanthin in plant storage organs. Thus, in this study, ketocarotenoid biosynthesis was engineered in potato tubers. Both Solanum tuberosum and Solanum phureja transgenic lines were produced that expressed an algal bkt1 gene, encoding a beta-ketolase, and accumulated ketocarotenoids. Two major ketocarotenoids were detected, ketolutein and astaxanthin. The level of unesterified astaxanthin reached ca. 14 microg g(-1) DW in some bkt1 expressing lines of S. phureja but was much lower in the S. tuberosum background. Co-transformation of S. tuberosum with crtB, encoding phytoene synthase, and the bkt1 gene was achieved in order to determine whether this would enhance the levels of S. tuberosum ketocarotenoid.


Assuntos
Carotenoides/biossíntese , Engenharia Genética/métodos , Caules de Planta/genética , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA