RESUMO
BACKGROUND: The large unmet need of hidradenitis suppurativa/acne inversa (HS) therapy requires the elucidation of disease-driving mechanisms and tissue targeting. OBJECTIVE: Robust characterization of the underlying HS mechanisms and detection of the involved skin compartments. METHODS: Hidradenitis suppurativa/acne inversa molecular taxonomy and key signalling pathways were studied by whole transcriptome profiling. Dysregulated genes were detected by comparing lesional and non-lesional skin obtained from female HS patients and matched healthy controls using the Agilent array platform. The differential gene expression was confirmed by quantitative real-time PCR and targeted protein characterization via immunohistochemistry in another set of female patients. HS-involved skin compartments were also recognized by immunohistochemistry. RESULTS: Alterations to key regulatory pathways involving glucocorticoid receptor, atherosclerosis, HIF1α and IL17A signalling as well as inhibition of matrix metalloproteases were detected. From a functional standpoint, cellular assembly, maintenance and movement, haematological system development and function, immune cell trafficking and antimicrobial response were key processes probably being affected in HS. Sixteen genes were found to characterize HS from a molecular standpoint (DEFB4, MMP1, GJB2, PI3, KRT16, MMP9, SERPINB4, SERPINB3, SPRR3, S100A8, S100A9, S100A12, S100A7A (15), KRT6A, TCN1, TMPRSS11D). Among the proteins strongly expressed in HS, calgranulin-A, calgranulin-B and serpin-B4 were detected in the hair root sheath, koebnerisin and connexin-32 in stratum granulosum, transcobalamin-1 in stratum spinosum/hair root sheath, small prolin-rich protein-3 in apocrine sweat gland ducts/sebaceous glands-ducts and matrix metallopeptidase-9 in resident monocytes. CONCLUSION: Our findings highlight a panel of immune-related drivers in HS, which influence innate immunity and cell differentiation in follicular and epidermal keratinocytes as well as skin glands.
Assuntos
Hidradenite Supurativa/genética , Hidradenite Supurativa/imunologia , Imunidade Inata , Adulto , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Feminino , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Reação em Cadeia da Polimerase em Tempo Real , Pele/citologia , TranscriptomaRESUMO
Multiple myeloma (MM) is an incurable malignancy of bone marrow plasma cells characterized by wide clinical and molecular heterogeneity. In this study we applied an integrative network biology approach to molecular and clinical data measured from 450 patients with newly diagnosed MM from the MMRF (Multiple Myeloma Research Foundation) CoMMpass study. A novel network model of myeloma (MMNet) was constructed, revealing complex molecular disease patterns and novel associations between clinical traits and genomic markers. Genomic alterations and groups of coexpressed genes correlate with disease stage, tumor clonality and early progression. We validated CDC42BPA and CLEC11A as novel regulators and candidate therapeutic targets of MMSET-related myeloma. We then used MMNet to discover novel genes associated with high-risk myeloma and identified a novel four-gene prognostic signature. We identified new patient classes defined by network features and enriched for clinically relevant genetic events, pathways and deregulated genes. Finally, we demonstrated the ability of deep sequencing techniques to detect relevant structural rearrangements, providing evidence that encourages wider use of such technologies in clinical practice. An integrative network analysis of CoMMpass data identified new insights into multiple myeloma disease biology and provided improved molecular features for diagnosing and stratifying patients, as well as additional molecular targets for therapeutic alternatives.
Assuntos
Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Medula Óssea/patologia , Linhagem Celular Tumoral , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/fisiologia , Genoma/genética , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , PrognósticoRESUMO
Identification and characterization of molecular mechanisms that connect genetic risk factors to initiation and evolution of disease pathophysiology represent major goals and opportunities for improving therapeutic and diagnostic outcomes in Alzheimer's disease (AD). Integrative genomic analysis of the human AD brain transcriptome holds potential for revealing novel mechanisms of dysfunction that underlie the onset and/or progression of the disease. We performed an integrative genomic analysis of brain tissue-derived transcriptomes measured from two lines of mice expressing distinct mutant AD-related proteins. The first line expresses oligomerogenic mutant APP(E693Q) inside neurons, leading to the accumulation of amyloid beta (Aß) oligomers and behavioral impairment, but never develops parenchymal fibrillar amyloid deposits. The second line expresses APP(KM670/671NL)/PSEN1(Δexon9) in neurons and accumulates fibrillar Aß amyloid and amyloid plaques accompanied by neuritic dystrophy and behavioral impairment. We performed RNA sequencing analyses of the dentate gyrus and entorhinal cortex from each line and from wild-type mice. We then performed an integrative genomic analysis to identify dysregulated molecules and pathways, comparing transgenic mice with wild-type controls as well as to each other. We also compared these results with datasets derived from human AD brain. Differential gene and exon expression analysis revealed pervasive alterations in APP/Aß metabolism, epigenetic control of neurogenesis, cytoskeletal organization and extracellular matrix (ECM) regulation. Comparative molecular analysis converged on FMR1 (Fragile X Mental Retardation 1), an important negative regulator of APP translation and oligomerogenesis in the post-synaptic space. Integration of these transcriptomic results with human postmortem AD gene networks, differential expression and differential splicing signatures identified significant similarities in pathway dysregulation, including ECM regulation and neurogenesis, as well as strong overlap with AD-associated co-expression network structures. The strong overlap in molecular systems features supports the relevance of these findings from the AD mouse models to human AD.
Assuntos
Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Presenilina-1/genética , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Colágenos Fibrilares , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Neurogênese , Neurônios/metabolismo , Placa Amiloide/patologia , Fatores de Risco , Transcriptoma/genéticaRESUMO
Regulators of the histone H3-trimethyl lysine-4 (H3K4me3) mark are significantly associated with the genetic risk architecture of common neurodevelopmental disease, including schizophrenia and autism. Typical H3K4me3 is primarily localized in the form of sharp peaks, extending in neuronal chromatin on average only across 500-1500 base pairs mostly in close proximity to annotated transcription start sites. Here, through integrative computational analysis of epigenomic and transcriptomic data based on next-generation sequencing, we investigated H3K4me3 landscapes of sorted neuronal and non-neuronal nuclei in human postmortem, non-human primate and mouse prefrontal cortex (PFC), and blood. To explore whether H3K4me3 peak signals could also extend across much broader domains, we examined broadest domain cell-type-specific H3K4me3 peaks in an unbiased manner with an innovative approach on 41+12 ChIP-seq and RNA-seq data sets. In PFC neurons, broadest H3K4me3 distribution ranged from 3.9 to 12 kb, with extremely broad peaks (~10 kb or broader) related to synaptic function and GABAergic signaling (DLX1, ELFN1, GAD1, IGSF9B and LINC00966). Broadest neuronal peaks showed distinct motif signatures and were centrally positioned in prefrontal gene-regulatory Bayesian networks and sensitive to defective neurodevelopment. Approximately 120 of the broadest H3K4me3 peaks in human PFC neurons, including many genes related to glutamatergic and dopaminergic signaling, were fully conserved in chimpanzee, macaque and mouse cortical neurons. Exploration of spread and breadth of lysine methylation markings could provide novel insights into epigenetic mechanism involved in neuropsychiatric disease and neuronal genome evolution.
Assuntos
Encéfalo/metabolismo , Epigênese Genética/genética , Redes Reguladoras de Genes/genética , Histonas/genética , Histonas/metabolismo , Adulto , Animais , Feminino , Humanos , Macaca , Masculino , Camundongos , Pan troglodytesRESUMO
Mutant rice cells (Oryza sativa L.) grown in liquid suspension cultures exported greater quantities of protein and ß-glucanases than controls. These mutants were isolated from anther calli resistant to 1 mM lysine plus threonine (LT), regenerated and reestablished as cell suspension cultures from seeds. Cellular protein levels are genetically conditioned, and the levels of extracellular proteins and enzyme activities are inversely related to that of the cellular portions. The rechallenge of cells with 1 mM LT inhibited the expression of both ß-1,3-glucanases and ß-1,4-glucosidases but had no significant effect upon the levels of chitinase activity. Mutant cells were more sensitive than controls to stress caused by exogenous LT. In general, under exogenous LT stress the mutant/control ratio for extracellular glucanases increased as the assay conditions were changed from a basic to an acidic pH. The specific activity of ßglucanases was highest in media and lowest in cells. Both the mutant and control cells exported ß-glucanases into the suspension medium, but the level of activity in media was greater in that in which the mutant was suspended. The export was probably modulated by the internal protein levels which were highest in mutant cells without LT. Seedlings from mutants with enhanced lysine also had enhanced acidic ß-glucanase activity.
RESUMO
A rice mutant with unique protein expression/ transport properties has been established as cells in liquid suspension and partially characterized. Mutants were originally recovered from anther calli grown for three cycles at inhibitory levels of lysine + threonine and one cycle of S-(2-aminoethyl)cysteine. Cell suspension cultures were started from high lysine-containing seeds regenerated from the inhibitor selections. Cultures of the mutant produce 2 times as much protein per unit weight as is produced by the control. Significant portions of the proteins are exported from the cells into the surrounding medium. The mutant also has 20% greater lysine content in the exported protein than the control. This cell suspension line should be particularly useful for biochemical and molecular studies on protein synthesis and processing phenomena in cereals.
RESUMO
Lysine is a limiting amino acid for optimal nutritional quality in rice grain. In vitro selections using inhibitory levels of lysine plus threonine or s-aminoethylcysteine allow the predictable recovery of variants with elevated levels of lysine and protein. These methods may generate useful starting germplasm for plant breeders. This study was conducted to define the genetics of lysine mutants in progeny from crosses of mutants derived from cells cultured in vitro in the presence of inhibitory levels of lysine plus threonine and s-(2-aminoethyl)-cysteine. In vitro selections produce a wide range of mutants, including endosperm mutants with elevated lysine and protein levels as well as mutants for high and low seed weights. Mutants were analyzed for lysine content by the endosperm half-seed method in which the halves without the embryo were ground and acid hydrolyzed for amino acid determinations. The halves with the embryos were preserved for later germination. In two different F2 populations derived from a cross of a selected mutant x M-101, a parental marker, there was an inverse relationship between seed weight and percent lysine in endosperm protein (R(2) 0.52 and 0.56). The F2 segregation patterns show that elevated lysine is inherited as a recessive gene and that increased lysine is correlated with decreased seed size. F3 and F4 data provide evidence for the transmission of high lysine genes to advanced germplasm in rice. This work supports our earlier conclusions that high lysine phenotypes can be recovered predictably from in vitro selections. The elevated lysine phenotypes are frequently, but not exclusively, associated with opaque seed. Some segregants from crosses produced increased lysine in plants with near normal seed weight and good fertility.