Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 11(12)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34947633

RESUMO

The multiphoton lithography (MPL) technique represents the future of 3D microprinting, enabling the production of complex microscale objects with high precision. Although the MPL fabrication parameters are widely evaluated and discussed, not much attention has been given to the microscopic properties of 3D objects with respect to their surface properties and time-dependent stability. These properties are of crucial importance when it comes to the safe and durable use of these structures in biomedical applications. In this work, we investigate the surface properties of the MPL-produced SZ2080 polymeric microstructures with regard to the physical aging processes during the post-production stage. The influence of aging on the polymeric microstructures was investigated by means of Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS). As a result, a time-dependent change in Young's Modulus, plastic deformation, and adhesion and their correlation to the development in chemical composition of the surface of MPL-microstructures are evaluated. The results presented here are valuable for the application of MPL-fabricated 3D objects in general, but especially in medical technology as they give detailed information of the physical and chemical time-dependent dynamic behavior of MPL-printed surfaces and thus their suitability and performance in biological systems.

2.
Nanomaterials (Basel) ; 8(8)2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-30096857

RESUMO

Hexagonal boron nitride is often referred to as white graphene. This is a 2D layered material, with a structure similar to graphene. It has gained many applications in cosmetics, dental cements, ceramics etc. Hexagonal boron nitride is also used in medicine, as a drug carrier similar as graphene or graphene oxide. Here we report that this material can be exfoliated in two steps: chemical treatment (via modified Hummers method) followed by the sonication treatment. Afterwards, the surface of the obtained material can be efficiently functionalized with gold nanoparticles. The mitochondrial activity was not affected in L929 and MCF-7 cell line cultures during 24-h incubation, whereas longer incubation (for 48, and 72 h) with this nanocomposite affected the cellular metabolism. Lysosome functionality, analyzed using the NR uptake assay, was also reduced in both cell lines. Interestingly, the rate of MCF-7 cell proliferation was reduced when exposed to h-BN loaded with gold nanoparticles. It is believed that h-BN nanocomposite with gold nanoparticles is an attractive material for cancer drug delivery and photodynamic therapy in cancer killing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA