Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 1135: 121-5, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24510860

RESUMO

Unilateral common carotid artery occlusion (CCAO) is a standardized method to initiate collateral artery growth (arteriogenesis) in mouse brain. After CCAO is induced, blood circulation in the circle of Willis is changed and increases shear stress, which triggers increased arterial diameter and improvements in cerebrovascular reserve capacity. Functional improvement can be quantified after experimentally induced stroke by external middle cerebral artery occlusion (MCAO). Stroke volume is evaluated by standard tetrazolium chloride (TTC) staining. Here, we describe in vivo methods of CCAO and MCAO in detail and also the evaluation of stroke volume by TTC staining.


Assuntos
Isquemia Encefálica/fisiopatologia , Artérias Cerebrais/fisiopatologia , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/fisiopatologia , Neovascularização Fisiológica , Animais , Camundongos
2.
Cerebrovasc Dis ; 33(5): 419-29, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22456527

RESUMO

BACKGROUND AND PURPOSE: Restoration of cerebrovascular reserve capacity (CVRC) depends on the recruitment and positive outward remodeling of preexistent collaterals (arteriogenesis). With this study, we provide functional evidence that granulocyte colony-stimulating factor (G-CSF) augments therapeutic arteriogenesis in two animal models of cerebral hypoperfusion. We identified an effective dosing regimen that improved CVRC and stimulated collateral growth, thereby improving the outcome after experimentally induced stroke. METHODS: We used two established animal models of (a) cerebral hypoperfusion (mouse, common carotid artery ligation) and (b) cerebral arteriogenesis (rat, 3-vessel occlusion). Following therapeutic dose determination, both models received either G-CSF, 40 µg/kg every other day, or vehicle for 1 week. Collateral vessel diameters were measured following latex angiography. Cerebrovascular reserve capacities were assessed after acetazolamide stimulation. Mice with left common carotid artery occlusion (CCAO) were additionally subjected to middle cerebral artery occlusion, and stroke volumes were assessed after triphenyltetrazolium chloride staining. Given the vital role of monocytes in arteriogenesis, we assessed (a) the influence of G-CSF on monocyte migration in vitro and (b) monocyte counts in the adventitial tissues of the growing collaterals in vivo. RESULTS: CVRC was impaired in both animal models 1 week after induction of hypoperfusion. While G-CSF, 40 µg/kg every other day, significantly augmented cerebral arteriogenesis in the rat model, 50 or 150 µg/kg every day did not show any noticeable therapeutic impact. G-CSF restored CVRC in mice (5 ± 2 to 12 ± 6%) and rats (3 ± 4 to 19 ± 12%). Vessel diameters changed accordingly: in rats, the diameters of posterior cerebral arteries (ipsilateral: 209 ± 7-271 ± 57 µm; contralateral: 208 ± 11-252 ± 28 µm) and in mice the diameter of anterior cerebral arteries (185 ± 15-222 ± 12 µm) significantly increased in the G-CSF groups compared to controls. Stroke volume in mice (10 ± 2%) was diminished following CCAO (7 ± 4%) and G-CSF treatment (4 ± 2%). G-CSF significantly increased monocyte migration in vitro and perivascular monocyte numbers in vivo. CONCLUSION: G-CSF augments cerebral collateral artery growth, increases CVRC and protects from experimentally induced ischemic stroke. When comparing three different dosing regimens, a relatively low dosage of G-CSF was most effective, indicating that the common side effects of this cytokine might be significantly reduced or possibly even avoided in this indication.


Assuntos
Circulação Cerebrovascular/efeitos dos fármacos , Transtornos Cerebrovasculares/tratamento farmacológico , Círculo Arterial do Cérebro/crescimento & desenvolvimento , Circulação Colateral/efeitos dos fármacos , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Animais , Arteriopatias Oclusivas/patologia , Estenose das Carótidas/patologia , Movimento Celular/efeitos dos fármacos , Transtornos Cerebrovasculares/patologia , Círculo Arterial do Cérebro/efeitos dos fármacos , Interpretação Estatística de Dados , Hemodinâmica/efeitos dos fármacos , Infarto da Artéria Cerebral Média/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/uso terapêutico , Recuperação de Função Fisiológica
3.
J Cereb Blood Flow Metab ; 32(1): 105-14, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21829214

RESUMO

This study investigated the effects of acetylsalicylic acid (ASA) and clopidogrel, standardly used in the secondary prevention of vascular occlusions, on cerebral arteriogenesis in vivo and in vitro. Cerebral hypoperfusion was induced by three-vessel occlusion (3-VO) in rats, which subsequently received vehicle, ASA (6.34 mg/kg), or clopidogrel (10 mg/kg). Granulocyte colony-stimulating factor (G-CSF), which enhanced monocyte migration in an additional cell culture model, augmented cerebrovascular arteriogenesis in subgroups (40 µg/kg). Cerebrovascular reactivity and vessel diameters were assessed at 7 and 21 days. Cerebrovascular reserve capacity was completely abolished after 3-VO and remained severely compromised after 7 (-14±14%) and 21 (-5±11%) days in the ASA groups in comparison with controls (4±5% and 10±10%) and clopidogrel (4±13% and 10±8%). It was still significantly decreased when ASA was combined with G-CSF (1±4%) compared with G-CSF alone (20±8%). Posterior cerebral artery diameters confirmed these data. Monocyte migration into the vessel wall, improved by G-CSF, was significantly reduced by ASA. Acetylsalicylic acid, but not clopidogrel, inhibits therapeutically augmented cerebral arteriogenesis.


Assuntos
Aspirina/farmacologia , Isquemia Encefálica/tratamento farmacológico , Fator Estimulador de Colônias de Granulócitos e Macrófagos/uso terapêutico , Neovascularização Fisiológica/efeitos dos fármacos , Inibidores da Agregação Plaquetária/farmacologia , Ticlopidina/análogos & derivados , Animais , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/fisiopatologia , Linhagem Celular , Angiografia Cerebral , Circulação Cerebrovascular/efeitos dos fármacos , Circulação Cerebrovascular/fisiologia , Quimiotaxia de Leucócito/efeitos dos fármacos , Clopidogrel , Modelos Animais de Doenças , Humanos , Masculino , Monócitos/citologia , Monócitos/efeitos dos fármacos , Neovascularização Fisiológica/fisiologia , Ratos , Ratos Sprague-Dawley , Ticlopidina/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia
4.
Development ; 137(13): 2187-96, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20530546

RESUMO

In the developing chicken embryo yolk sac vasculature, the expression of arterial identity genes requires arterial hemodynamic conditions. We hypothesize that arterial flow must provide a unique signal that is relevant for supporting arterial identity gene expression and is absent in veins. We analyzed factors related to flow, pressure and oxygenation in the chicken embryo vitelline vasculature in vivo. The best discrimination between arteries and veins was obtained by calculating the maximal pulsatile increase in shear rate relative to the time-averaged shear rate in the same vessel: the relative pulse slope index (RPSI). RPSI was significantly higher in arteries than veins. Arterial endothelial cells exposed to pulsatile shear in vitro augmented arterial marker expression as compared with exposure to constant shear. The expression of Gja5 correlated with arterial flow patterns: the redistribution of arterial flow provoked by vitelline artery ligation resulted in flow-driven collateral arterial network formation and was associated with increased expression of Gja5. In situ hybridization in normal and ligation embryos confirmed that Gja5 expression is confined to arteries and regulated by flow. In mice, Gja5 (connexin 40) was also expressed in arteries. In the adult, increased flow drives arteriogenesis and the formation of collateral arterial networks in peripheral occlusive diseases. Genetic ablation of Gja5 function in mice resulted in reduced arteriogenesis in two occlusion models. We conclude that pulsatile shear patterns may be central for supporting arterial identity, and that arterial Gja5 expression plays a functional role in flow-driven arteriogenesis.


Assuntos
Artérias/embriologia , Conexinas/metabolismo , Neovascularização Fisiológica , Animais , Aorta/embriologia , Aorta/metabolismo , Artérias/ultraestrutura , Embrião de Galinha , Conexinas/genética , Humanos , Camundongos , Microscopia Eletrônica de Varredura , Resistência ao Cisalhamento , Proteína alfa-5 de Junções Comunicantes
5.
J Cereb Blood Flow Metab ; 28(11): 1811-23, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18594555

RESUMO

Cerebral arteriogenesis constitutes a promising therapeutic concept for cerebrovascular ischaemia; however, transcriptional profiles important for therapeutic target identification have not yet been investigated. This study aims at a comprehensive characterization of transcriptional and morphologic activation during early-phase collateral vessel growth in a rat model of adaptive cerebral arteriogenesis. Arteriogenesis was induced using a three-vessel occlusion (3-VO) rat model of nonischaemic cerebral hypoperfusion. Collateral tissue from growing posterior cerebral artery (PCA) and posterior communicating artery (Pcom) was selectively isolated avoiding contamination with adjacent tissue. We detected differential gene expression 24 h after 3-VO with 164 genes significantly deregulated. Expression patterns contained gene transcripts predominantly involved in proliferation, inflammation, and migration. By using scanning electron microscopy, morphologic activation of the PCA endothelium was detected. Furthermore, the PCA showed induced proliferation (PCNA staining) and CD68+ macrophage staining 24 h after 3-VO, resulting in a significant increase in diameter within 7 days after 3-VO, confirming the arteriogenic phenotype. Analysis of molecular annotations and networks associated with differentially expressed genes revealed that early-phase cerebral arteriogenesis is characterised by the expression of protease inhibitors. These results were confirmed by quantitative real-time reverse transcription-PCR, and in situ hybridisation localised the expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) and kininogen to collateral arteries, showing that TIMP-1 and kininogen might be molecular markers for early-phase cerebral arteriogenesis.


Assuntos
Arteriopatias Oclusivas/fisiopatologia , Arteriopatias Oclusivas/terapia , Isquemia Encefálica/fisiopatologia , Artérias Cerebrais/fisiologia , Circulação Cerebrovascular/fisiologia , Circulação Colateral/fisiologia , Proteínas do Tecido Nervoso/genética , Inibidores de Proteases/metabolismo , Animais , Isquemia Encefálica/genética , Isquemia Encefálica/terapia , Artérias Cerebrais/crescimento & desenvolvimento , Modelos Animais de Doenças , Hibridização In Situ , Análise de Sequência com Séries de Oligonucleotídeos , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Amiloide A Sérica/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA