Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
ACS Nano ; 18(26): 16516-16529, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38912600

RESUMO

Activated guided irradiation by X-ray (AGuIX) nanoparticles are gadolinium-based agents that have the dual benefit of mimicking the effects of a magnetic resonance imaging (MRI) contrast agent used in a clinical routine and enhancing the radiotherapeutic activity of conventional X-rays (for cancer treatment). This "theragnostic" action is explained on the one hand by the paramagnetic properties of gadolinium and on the other hand by the generation of high densities of secondary radiation following the interaction of ionizing radiation and high-Z atoms, which leads to enhanced radiation dose deposits within the tumors where the nanoparticles accumulate. Here, we report the results of a phase I trial that aimed to assess the safety and determine the optimal dose of AGuIX nanoparticles in combination with chemoradiation and brachytherapy in patients with locally advanced cervical cancer. AGuIX nanoparticles were administered intravenously and appropriately accumulated within tumors on a dose-dependent manner, as assessed by T1-weighted MRI, with a rapid urinary clearance of uncaught nanoparticles. We show that the observed tumor accumulation of the compounds can support precise delineation of functional target volumes at the time of brachytherapy based on gadolinium enhancement. AGuIX nanoparticles combined with chemoradiation appeared well tolerated among the 12 patients treated, with no dose-limiting toxicity observed. Treatment yielded excellent local control, with all patients achieving complete remission of the primary tumor. One patient had a distant tumor recurrence. These results demonstrate the clinical feasibility of using theranostic nanoparticles to augment the accuracy of MRI-based treatments while focally enhancing the radiation activity in tumors.


Assuntos
Gadolínio , Imageamento por Ressonância Magnética , Nanopartículas , Neoplasias do Colo do Útero , Gadolínio/química , Humanos , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/terapia , Neoplasias do Colo do Útero/patologia , Feminino , Nanopartículas/química , Pessoa de Meia-Idade , Braquiterapia , Meios de Contraste/química , Raios X , Adulto , Idoso , Quimiorradioterapia
2.
Sci Rep ; 14(1): 11959, 2024 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796495

RESUMO

AGuIX, a novel gadolinium-based nanoparticle, has been deployed in a pioneering double-blinded Phase II clinical trial aiming to assess its efficacy in enhancing radiotherapy for tumor treatment. This paper moves towards this goal by analyzing AGuIX uptake patterns in 23 patients. A phantom was designed to establish the relationship between AGuIX concentration and longitudinal ( T 1 ) relaxation. A 3T MRI and MP2RAGE sequence were used to generate patient T 1 maps. AGuIX uptake in tumors was determined based on longitudinal relaxivity. AGuIX (or placebo) was administered to 23 patients intravenously at 100 mg/kg 1-5 hours pre-imaging. Each of 129 brain metastases across 23 patients were captured in T 1 maps and examined for AGuIX uptake and distribution. Inferred AGuIX recipients had average tumor uptakes between 0.012 and 0.17 mg/ml, with a mean of 0.055 mg/ml. Suspected placebo recipients appeared to have no appreciable uptake. Tumors presented with varying spatial AGuIX uptake distributions, suspected to be related to differences in accumulation time and patient-specific bioaccumulation factors. This research demonstrates AGuIX's ability to accumulate in brain metastases, with quantifiable uptake via T 1 mapping. Future analyses will extend these methods to complete clinical trial data (~ 134 patients) to evaluate the potential relationship between nanoparticle uptake and possible tumor response following radiotherapy.Clinical Trial Registration Number: NCT04899908.Clinical Trial Registration Date: 25/05/2021.


Assuntos
Neoplasias Encefálicas , Gadolínio , Imageamento por Ressonância Magnética , Humanos , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Gadolínio/metabolismo , Gadolínio/administração & dosagem , Imageamento por Ressonância Magnética/métodos , Feminino , Pessoa de Meia-Idade , Masculino , Nanopartículas/química , Meios de Contraste/farmacocinética , Imagens de Fantasmas , Idoso , Adulto , Método Duplo-Cego
3.
Theranostics ; 13(14): 4711-4729, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37771768

RESUMO

Background: The introduction of magnetic resonance (MR)-guided radiation treatment planning has opened a new space for theranostic nanoparticles to reduce acute toxicity while improving local control. In this work, second-generation AGuIX® nanoparticles (AGuIX-Bi) are synthesized and validated. AGuIX-Bi are shown to maintain MR positive contrast while further amplifying the radiation dose by the replacement of some Gd3+ cations with higher Z Bi3+. These next-generation nanoparticles are based on the AGuIX® platform, which is currently being evaluated in multiple Phase II clinical trials in combination with radiotherapy. Methods: In this clinically scalable methodology, AGuIX® is used as an initial chelation platform to exchange Gd3+ for Bi3+. AGuIX-Bi nanoparticles are synthesized with three ratios of Gd/Bi, each maintaining MR contrast while further amplifying radiation dose relative to Bi3+. Safety, efficacy, and theranostic potential of the nanoparticles were evaluated in vitro and in vivo in a human non-small cell lung cancer model. Results: We demonstrated that increasing Bi3+ in the nanoparticles is associated with more DNA damage and improves in vivo efficacy with a statistically significant delay in tumor growth and 33% complete regression for the largest Bi/Gd ratio tested. The addition of Bi3+ by our synthetic method leads to nanoparticles that present slightly altered pharmacokinetics and lengthening of the period of high tumor accumulation with no observed evidence of toxicity. Conclusions: We confirmed the safety and enhanced efficacy of AGuIX-Bi with radiation therapy at the selected ratio of 30Gd/70Bi. These results provide crucial evidence towards patient translation.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Nanopartículas , Humanos , Medicina de Precisão , Meios de Contraste , Imageamento por Ressonância Magnética/métodos , Doses de Radiação , Nanomedicina Teranóstica/métodos
4.
BMC Cancer ; 23(1): 344, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37060055

RESUMO

BACKGROUND: Despite standard treatments including chemoradiotherapy with temozolomide (TMZ) (STUPP protocol), the prognosis of glioblastoma patients remains poor. AGuIX nanoparticles have a high radiosensitizing potential, a selective and long-lasting accumulation in tumors and a rapid renal elimination. Their therapeutic effect has been proven in vivo on several tumor models, including glioblastoma with a potential synergetic effect when combined with TMZ based chemoradiotherapy, and they are currently evaluated in 4 ongoing Phase Ib and II clinical trials in 4 indications (brain metastases, lung, pancreatic and cervix cancers) (> 100 patients received AGuIX). Thus, they could offer new perspectives for patients with newly diagnosed glioblastoma. The aim of this study is to determine the recommended dose of AGuIX as a radiosensitizer in combination with radiotherapy and TMZ during the concurrent radio-chemotherapy period for phase II (RP2D) and to estimate the efficacy of the combination. METHODS: NANO-GBM is a multicenter, phase I/II, randomized, open-label, non-comparative, therapeutic trial. According to a dose escalation scheme driven by a TITE-CRM design, 3 dose levels of AGuIX (50, 75 and 100 mg/kg) will be tested in phase I added to standard concomitant radio-chemotherapy. Patients with grade IV glioblastoma, not operated or partially operated, with a KPS ≥ 70% will be eligible for the study. The primary endpoints are i) for phase I, the RP2D of AGuIX, with DLT defined as any grade 3-4 NCI-CTCAE toxicity and ii) for phase II, the 6-month progression-free survival rate. The pharmacokinetics, distribution of nanoparticles, tolerance of the combination, neurological status, overall survival (median, 6-month and 12-month rates), response to treatment, and progression-free survival (median and 12-month rates) will be assessed as secondary objectives. Maximum sixty-six patients are expected to be recruited in the study from 6 sites. DISCUSSION: The use of AGuIX nanoparticles could allow to overpass the radioresistance to the reference treatment of newly diagnosed glioblastomas that have the poorest prognosis (incomplete resection or biopsy only). TRIAL REGISTRATION: Clinicaltrials.gov: NCT04881032 , registered on April 30, 2021. Identifier with the French National Agency for the Safety of Medicines and Health Products (ANSM): N°Eudra CT 2020-004552-15. PROTOCOL: version 3, 23 May 2022.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Nanopartículas , Feminino , Humanos , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Antineoplásicos Alquilantes/uso terapêutico , Quimiorradioterapia/métodos , Neoplasias Encefálicas/patologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Multicêntricos como Assunto , Ensaios Clínicos Fase II como Assunto , Ensaios Clínicos Fase I como Assunto
5.
J Magn Reson Imaging ; 58(1): 313-323, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36315197

RESUMO

BACKGROUND: The measurement of the concentration of theranostic agents in vivo is essential for the assessment of their therapeutic efficacy and their safety regarding healthy tissue. To this end, there is a need for quantitative T1 measurements that can be obtained as part of a standard clinical imaging protocol applied to tumor patients. PURPOSE: To generate T1 maps from MR images obtained with the magnetization-prepared rapid gradient echo (MPRAGE) sequence. To evaluate the feasibility of the proposed approach on phantoms, animal and patients with brain metastases. STUDY TYPE: Pilot. PHANTOM/ANIMAL MODEL/POPULATION: Solutions containing contrast agents (chelated Gd3+ and iron nanoparticles), male rat of Wistar strain, three patients with brain metastases. FIELD STRENGTH/SEQUENCE: A 3-T and 7-T, saturation recovery (SR), and MPRAGE sequences. ASSESSMENT: The MPRAGE T1 measurement was compared to the reference SR method on phantoms and rat brain at 7-T. The robustness of the in vivo method was evaluated by studying the impact of misestimates of tissue proton density. Concentrations of Gd-based theranostic agents were measured at 3-T in gray matter and metastases in patients recruited in NanoRad clinical trial. STATISTICAL TESTS: A linear model was used to characterize the relation between T1 measurements from the MPRAGE and the SR acquisitions obtained in vitro at 7-T. RESULTS: The slope of the linear model was 0.966 (R2  = 0.9934). MPRAGE-based T1 values measured in the rat brain were 1723 msec in the thalamus. MPRAGE-based T1 values measured in patients in white matter and gray matter amounted to 747 msec and 1690 msec. Mean concentration values of Gd3+ in metastases were 61.47 µmol. DATA CONCLUSION: The T1 values obtained in vitro and in vivo support the validity of the proposed approach. The concentrations of Gd-based theranostic agents may be assessed in patients with metastases within a standard clinical imaging protocol using the MPRAGE sequence. EVIDENCE LEVEL: 2. TECHNICAL EFFICACY: Stage 1.


Assuntos
Neoplasias Encefálicas , Encéfalo , Masculino , Animais , Ratos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Medicina de Precisão , Ratos Wistar , Imageamento por Ressonância Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia
6.
Radiother Oncol ; 160: 159-165, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33961915

RESUMO

BACKGROUND AND PURPOSE: Brain metastasis impacts greatly on patients' quality of life and survival. The phase I NANO-RAD trial assessed the safety and maximum tolerated dose of systemic administration of a novel gadolinium-based nanoparticle, AGuIX, in combination with whole brain radiotherapy in patients with multiple brain metastases not suitable for stereotactic radiotherapy. MATERIALS AND METHODS: Patients with measurable brain metastases received escalating doses of AGuIX nanoparticles (15, 30, 50, 75, or 100 mg/kg intravenously) on the day of initiation of WBRT (30 Gy in 10 fractions) in 5 cohorts of 3 patients each. Toxicity was assessed using NCI Common Terminology Criteria for Adverse Events v4.03. RESULTS: Fifteen patients with 354 metastases were included. No dose-limiting toxic effects were observed up to AGuIX 100 mg/kg. Plasma elimination half-life of AGuIX was similar for all groups (mean 1.3 h; range 0.8-3 h). Efficient targeting of metastases (T1 MRI enhancement, tumor selectivity) and persistence of AGuIX contrast enhancement were observed in metastases from patients with primary melanoma, lung, breast, and colon cancers. The concentration of AGuIX in metastases after administration was proportional to the injected dose. Thirteen of 14 evaluable patients had a clinical benefit, with either stabilization or reduction of tumor volume. MRI analysis showed significant correlation between contrast enhancement and tumor response, thus supporting a radiosensitizing effect. CONCLUSION: Combining AGuIX with radiotherapy for patients with brain metastases is safe and feasible. AGuIX specifically targets brain metastases and is retained within tumors for up to 1 week; ongoing phase II studies will more definitively assess efficacy.


Assuntos
Neoplasias Encefálicas , Nanopartículas , Radiossensibilizantes , Neoplasias Encefálicas/radioterapia , Humanos , Medicina de Precisão , Qualidade de Vida
7.
Sci Adv ; 6(29): eaay5279, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32832613

RESUMO

The use of radiosensitizing nanoparticles with both imaging and therapeutic properties on the same nano-object is regarded as a major and promising approach to improve the effectiveness of radiotherapy. Here, we report the MRI findings of a phase 1 clinical trial with a single intravenous administration of Gd-based AGuIX nanoparticles, conducted in 15 patients with four types of brain metastases (melanoma, lung, colon, and breast). The nanoparticles were found to accumulate and to increase image contrast in all types of brain metastases with MRI enhancements equivalent to that of a clinically used contrast agent. The presence of nanoparticles in metastases was monitored and quantified with MRI and was noticed up to 1 week after their administration. To take advantage of the radiosensitizing property of the nanoparticles, patients underwent radiotherapy sessions following their administration. This protocol has been extended to a multicentric phase 2 clinical trial including 100 patients.

8.
Theranostics ; 10(3): 1319-1331, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31938067

RESUMO

Interest of tumor targeting through EPR effect is still controversial due to intrinsic low targeting efficacy and rare translation to human cancers. Moreover, due to different reasons, it has generally been described for relatively large nanoparticles (NPs) (hydrodynamic diameter > 10 nm). In this review EPR effect will be discussed for ultrasmall NPs using the example of the AGuIX® NP (Activation and Guiding of Irradiation by X-ray) recently translated in clinic. AGuIX® NP is a 4 ± 2 nm hydrodynamic diameter polysiloxane based NP. Since AGuIX® NP biodistribution is monitored by magnetic resonance imaging (MRI) and its activation is triggered by irradiation upon X-rays, this NP is well adapted for a theranostic approach of radiotherapy cancer treatment. Here we show that AGuIX® NP is particularly well suited to benefit from EPR-mediated tumor targeting thanks to an ultrasmall size and efficacy under irradiation at small dose. Indeed, intravenously-injected AGuIX® NP into rodent cancer models passively reached the tumor and revealed no toxicity, favoured by renal clearance. Moreover, translation of AGuIX® NP accumulation and retention into humans carrying brain metastases was validated during a first-in-man phase Ib trial taking advantage of easy biodistribution monitoring by MRI.


Assuntos
Gadolínio , Nanopartículas/química , Neoplasias , Nanomedicina Teranóstica , Animais , Quelantes/química , Gadolínio/farmacocinética , Gadolínio/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Tamanho da Partícula , Siloxanas/química , Distribuição Tecidual
9.
J Clin Neurosci ; 67: 215-219, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31281087

RESUMO

We formulated an ultra-small, gadolinium-based nanoparticle (AGuIX) with theranostic properties to simultaneously enhance MRI tumor delineation and radiosensitization in a glioma model. The 9L glioma cells were orthotopically implanted in 10-week-old Fischer rats. The intra-tumoral accumulation of AGuIX was quantified using MRI T1-maps. Rats randomized to intervention cohorts were subsequently treated with daily temozolomide for five consecutive days before radiotherapy treatment. Collectively, a series of 32 rats were divided into untreated (n = 7), temozolomide-only (n = 7), temozolomide and MRT (n = 9), AGuIX and MRT (n = 7), and triple therapy (temozolomide, AGuIX NPs, and MRT; n = 9) cohorts. AGuIX nanoparticles achieved a maximum intra-tumoral concentration (expressed as concentration of Gd3+) at 1 h after intravenous injection, reaching a mean of 227.9 ±â€¯60 µM. This was compared to concentrations of 10.5 ±â€¯9.2 µM and 62.9 ±â€¯24.7 µM in the contralateral hemisphere and cheek, respectively. There was a slower washout in the intra-tumor region, with sustained tumor-to-contralateral ratio of AGuIX, up to 14-fold, for each time point. The combination of AGuIX or temozolomide with MRT improved the median survival time (40 days) compared to the MeST of control rats (25 days) (p < 0.002). There was a trend towards further increased survival when the three treatments were combined (MeST of 46 days). This study demonstrated the selective accumulation of AGuIX in high grade glioma, as well as the potential survival benefits when combined with chemoradiation.


Assuntos
Neoplasias Encefálicas/patologia , Gadolínio , Glioma/patologia , Radiossensibilizantes/farmacologia , Nanomedicina Teranóstica , Animais , Quimiorradioterapia/métodos , Meios de Contraste/farmacologia , Imageamento por Ressonância Magnética/métodos , Masculino , Nanopartículas , Ratos , Ratos Endogâmicos F344 , Temozolomida/farmacologia
10.
BMJ Open ; 9(2): e023591, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30755445

RESUMO

INTRODUCTION: Occurrence of multiple brain metastases is a critical evolution of many cancers with significant neurological and overall survival consequences, despite new targeted therapy and standard whole brain radiotherapy (WBRT). A gadolinium-based nanoparticle, AGuIX, has recently demonstrated its effectiveness as theranostic and radiosensitiser agent in preclinical studies. The favourable toxicity profile in animals and its administration as a simple intravenous injection has motivated its use in patients with this first in human study. METHODS AND ANALYSIS: The NANO-RAD study is a phase I, first in human injection, monocentric, open-label, dose-escalation study to investigate the safety, the tolerability and the spectrum of side effects of AGuIX in combination with WBRT (30 Gy, 10 fractions of 3 Gy) for patients with multiple brain metastases. Five dose escalation cohorts are planned: 15, 30, 50, 75 and 100 mg/kg. A total of 15-18 patients will be recruited into this trial. The primary objective is to determine the maximum-tolerated dose of AGuIX nanoparticles combined with WBRT for the treatment of multiple brain metastases. Toxicity will be assessed using the National Cancer Institute Common Toxicity Criteria V.4.03. Secondary objectives are pharmacokinetic profile, distribution of AGuIX in metastases and surrounding healthy tissue visualised by MRI, intracranial progression-free survival and overall survival. Intracranial response will be determined according to Response Evaluation Criteria in Solid Tumour Criteria V.1.1 comparing MRI performed prior to treatment and at each follow-up visits. ETHICS AND DISSEMINATION: Approval was obtained from the ethics committee Sud Est V, France (Reference number 15-CHUG-48). The study was approved by the French National Agency for the Safety of Medicines and Health Products (ANSM) (Reference number 151519A-12). The results will be published in peer-reviewed journals or disseminated through national and international conferences. TRIAL REGISTRATION NUMBER: NCT02820454; Pre-results.


Assuntos
Neoplasias Encefálicas/radioterapia , Gadolínio/administração & dosagem , Nanopartículas Metálicas/administração & dosagem , Radiossensibilizantes/administração & dosagem , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Ensaios Clínicos Fase I como Assunto , Terapia Combinada , Fracionamento da Dose de Radiação , Imageamento por Ressonância Magnética , Neoplasias Primárias Múltiplas , Radioterapia/métodos , Resultado do Tratamento
11.
Br J Radiol ; 92(1093): 20180365, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30226413

RESUMO

AGuIX® are sub-5 nm nanoparticles made of a polysiloxane matrix and gadolinium chelates. This nanoparticle has been recently accepted in clinical trials in association with radiotherapy. This review will summarize the principal preclinical results that have led to first in man administration. No evidence of toxicity has been observed during regulatory toxicity tests on two animal species (rodents and monkeys). Biodistributions on different animal models have shown passive uptake in tumours due to enhanced permeability and retention effect combined with renal elimination of the nanoparticles after intravenous administration. High radiosensitizing effect has been observed with different types of irradiations in vitro and in vivo on a large number of cancer types (brain, lung, melanoma, head and neck…). The review concludes with the second generation of AGuIX nanoparticles and the first preliminary results on human.


Assuntos
Gadolínio/administração & dosagem , Nanopartículas/administração & dosagem , Radiossensibilizantes/administração & dosagem , Nanomedicina Teranóstica/métodos , Animais , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Previsões , Neoplasias de Cabeça e Pescoço/diagnóstico , Neoplasias de Cabeça e Pescoço/terapia , Humanos , Melanoma/patologia , Melanoma/terapia , Camundongos , Nanomedicina Teranóstica/tendências
12.
Head Neck ; 41(2): 403-410, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30548507

RESUMO

BACKGROUND: The aim of the study was to evaluate the benefits of the combination of Gadolinium-based nanoparticles AGuIX and radiotherapy on the recurrence free survival after tumor resection in a head and neck animal orthotopic model. METHODS: Human head and neck CAL33 orthotopic tumors were implanted in female NMRI nude mice. The biodistribution of AGuIX was studied by fluorescence imaging. Tumor resection was performed 19 days after tumor implantation. Radiotherapy was performed 23 days after resection (10 Gy), 1 hour after AGuIX IV injection. RESULTS: After systemic administration, AGuIX passively accumulated in the orthotopic tumors. After tumor surgery, the combination of AGuIX with radiotherapy significantly improved the recurrence free survival and the median survival time (196 days) compared to irradiated only mice (75 days). CONCLUSION: This study demonstrated the improvement of the recurrence free survival following combination of AGuIX injection with radiotherapy after Head and neck tumor resection.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Gadolínio/farmacocinética , Neoplasias de Cabeça e Pescoço/metabolismo , Nanopartículas , Radiossensibilizantes/farmacocinética , Animais , Carcinoma de Células Escamosas/diagnóstico por imagem , Carcinoma de Células Escamosas/tratamento farmacológico , Modelos Animais de Doenças , Feminino , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Camundongos , Camundongos Nus , Imagem Óptica , Nanomedicina Teranóstica , Distribuição Tecidual
13.
NMR Biomed ; 30(11)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28857310

RESUMO

Lung cancer is a primary cause of cancer deaths worldwide. Timely detection of this pathology is necessary to delay or interrupt lung cancer progression, ultimately resulting in a possible better prognosis for the patient. In this context, magnetic resonance imaging (MRI) is especially promising. Ultra-short echo time (UTE) MRI sequences, in combination with gadolinium-based contrast agents, have indeed shown to be especially adapted to the detection of lung neoplastic lesions at submillimeter precision. Manganese-enhanced MRI (MEMRI) increasingly appears to be a possible effective alternative to gadolinium-enhanced MRI. In this work, we investigated whether low-dose MEMRI can effectively target non-small-cell lung cancer in rodents, whilst minimizing the potential toxic effect of manganese. Both systemic and orotracheal administration modalities allowed the identification of tumors of submillimeter size, as confirmed by bioluminescence imaging and histology. Equivalent tumor signal enhancements and contrast-to-noise ratios were observed with orotracheal administration using 20 times lower doses compared with the more conventional systemic route. This finding is of crucial importance as it supports the observation that higher performances of contrast agents can be obtained using an orotracheal administration route when targeting lung diseases. As a consequence, lower concentrations of contrast media can be employed, reducing the dose and potential safety issues. The non-detectable accumulation of ionic manganese in the brain and liver following orotracheal administration observed in vivo is extremely encouraging with regard to the safety of the orotracheal protocol with low-dose Mn2+ administration. To our knowledge, this is the first time that a study has clearly allowed the high-precision detection of lung tumor and its contours via the synergic employment of a strongly T1 -weighted MRI UTE sequence and ionic manganese, an inexpensive contrast agent. Overall, these results support the growing interest in drug and contrast agent delivery via the airways to target and diagnose several diseases of the lungs.


Assuntos
Aumento da Imagem , Neoplasias Pulmonares/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Manganês/farmacologia , Animais , Meios de Contraste , Feminino , Camundongos
14.
Nanomedicine (Lond) ; 11(18): 2405-17, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27529506

RESUMO

AIM: This study reports the use of gadolinium-based AGuIX nanoparticles (NPs) as a theranostic tool for both image-guided radiation therapy and radiosensitization of brain tumors. MATERIALS & METHODS: Pharmacokinetics and regulatory toxicology investigations were performed on rodents. The AGuIX NPs' tumor accumulation was studied by MRI before 6-MV irradiation. RESULTS: AGuIX NPs exhibited a great safety profile. A single intravenous administration enabled the tumor delineation by MRI with a T1 tumor contrast enhancement up to 24 h, and the tumor volume reduction when combined with a clinical 6-MV radiotherapy. CONCLUSION: This study demonstrates the efficacy and the potential of AGuIX NPs for image-guided radiation therapy, promising properties that will be assessed in the upcoming Phase I clinical trial.


Assuntos
Glioma/diagnóstico por imagem , Glioma/radioterapia , Nanopartículas Metálicas/administração & dosagem , Radiossensibilizantes/administração & dosagem , Animais , Meios de Contraste/administração & dosagem , Meios de Contraste/química , Modelos Animais de Doenças , Gadolínio/administração & dosagem , Gadolínio/química , Glioma/patologia , Humanos , Imageamento por Ressonância Magnética , Nanopartículas Metálicas/química , Radiossensibilizantes/química , Ratos
15.
Sci Rep ; 6: 29678, 2016 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-27411781

RESUMO

We recently developed the synthesis of ultrasmall gadolinium-based nanoparticles (GBN), (hydrodynamic diameter <5 nm) characterized by a safe behavior after intravenous injection (renal clearance, preferential accumulation in tumors). Owing to the presence of gadolinium ions, GBN can be used as contrast agents for magnetic resonance imaging (MRI) and as radiosensitizers. The attempt to determine the most opportune delay between the intravenous injection of GBN and the irradiation showed that a very low content of radiosensitizing nanoparticles in the tumor area is sufficient (0.1 µg/g of particles, i.e. 15 ppb of gadolinium) for an important increase of the therapeutic effect of irradiation. Such a promising and unexpected result is assigned to a suited distribution of GBN within the tumor, as revealed by the X-ray fluorescence (XRF) maps.


Assuntos
Gadolínio/administração & dosagem , Gliossarcoma/radioterapia , Nanopartículas/administração & dosagem , Radiossensibilizantes/administração & dosagem , Animais , Linhagem Celular , Meios de Contraste/administração & dosagem , Imageamento por Ressonância Magnética/métodos , Masculino , Ratos , Ratos Endogâmicos F344 , Raios X
16.
Sci Rep ; 6: 21417, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26892874

RESUMO

Nanoparticles are useful tools in oncology because of their capacity to passively accumulate in tumors in particular via the enhanced permeability and retention (EPR) effect. However, the importance and reliability of this effect remains controversial and quite often unpredictable. In this preclinical study, we used optical imaging to detect the accumulation of three types of fluorescent nanoparticles in eight different subcutaneous and orthotopic tumor models, and dynamic contrast-enhanced and vessel size index Magnetic Resonance Imaging (MRI) to measure the functional parameters of these tumors. The results demonstrate that the permeability and blood volume fraction determined by MRI are useful parameters for predicting the capacity of a tumor to accumulate nanoparticles. Translated to a clinical situation, this strategy could help anticipate the EPR effect of a particular tumor and thus its accessibility to nanomedicines.


Assuntos
Imageamento por Ressonância Magnética , Nanopartículas/química , Neoplasias/diagnóstico , Animais , Linhagem Celular Tumoral , Meios de Contraste , Modelos Animais de Doenças , Xenoenxertos , Humanos , Lipídeos/química , Imageamento por Ressonância Magnética/métodos , Camundongos , Nanopartículas/administração & dosagem , Neoplasias/metabolismo , Tamanho da Partícula , Permeabilidade
17.
Nanotoxicology ; 10(3): 292-302, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26573338

RESUMO

To design nanoparticle (NP)-based drug delivery systems for pulmonary administration, biodegradable materials are considered safe, but their potential toxicity is poorly explored. We here explore the lung toxicity in mice of biodegradable nanoparticles (NPs) and compare it to the toxicity of non-biodegradable ones. NP formulations of poly(d,l-lactide-co-glycolide) (PLGA) coated with chitosan (CS), poloxamer 188 (PF68) or poly(vinyl alcohol) (PVA), which renders 200 nm NPs of positive, negative or neutral surface charge respectively, were analyzed for their biodistribution by in vivo fluorescence imaging and their inflammatory potential after single lung nebulization in mice. After exposure, analysis of bronchoalveolar lavage (BAL) cell population, protein secretion and cytokine release as well as lung histology were carried out. The inflammatory response was compared to the one induced by non-biodegradable counterparts, namely, TiO2 of rutile and anatase crystal form and polystyrene (PS). PLGA NPs were mostly present in mice lungs, with little passage to other organs. An increase in neutrophil recruitment was observed in mice exposed to PS NPs 24 h after nebulization, which declined at 48 h. This result was supported by an increase in interleukin (IL)-6 and tumor necrosis factor α (TNFα) in BAL supernatant at 24 h. TiO2 anatase NPs were still present in lung cells 48 h after nebulization and induced the expression of pro-inflammatory cytokines and the recruitment of polymorphonuclear cells to BAL. In contrast, regardless of their surface charge, PLGA NPs did not induce significant changes in the inflammation markers analyzed. In conclusion, these results point out to a safe use of PLGA NPs regardless of their surface coating compared to non-biodegradable ones.


Assuntos
Quitosana/toxicidade , Ácido Láctico/toxicidade , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Nanopartículas/toxicidade , Poloxâmero/toxicidade , Ácido Poliglicólico/toxicidade , Álcool de Polivinil/toxicidade , Administração por Inalação , Aerossóis/administração & dosagem , Aerossóis/farmacocinética , Aerossóis/toxicidade , Animais , Lavagem Broncoalveolar , Quitosana/química , Quitosana/farmacocinética , Mediadores da Inflamação/metabolismo , Ácido Láctico/química , Ácido Láctico/farmacocinética , Pulmão/patologia , Camundongos , Nanopartículas/administração & dosagem , Nanopartículas/química , Poloxâmero/química , Poloxâmero/farmacocinética , Ácido Poliglicólico/química , Ácido Poliglicólico/farmacocinética , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Poliestirenos/química , Poliestirenos/farmacocinética , Poliestirenos/toxicidade , Álcool de Polivinil/química , Álcool de Polivinil/farmacocinética , Distribuição Tecidual , Titânio/química , Titânio/toxicidade
18.
Small ; 11(2): 215-21, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25201285

RESUMO

Lung cancer is the most common and most fatal cancer worldwide. Thus, improving early diagnosis and therapy is necessary. Previously, gadolinium-based ultra-small rigid platforms (USRPs) were developed to serve as multimodal imaging probes and as radiosensitizing agents. In addition, it was demonstrated that USRPs can be detected in the lungs using ultrashort echo-time magnetic resonance imaging (UTE-MRI) and fluorescence imaging after intrapulmonary administration in healthy animals. The goal of the present study is to evaluate their theranostic properties in mice with bioluminescent orthotopic lung cancer, after intrapulmonary nebulization or conventional intravenous administration. It is found that lung tumors can be detected non-invasively using fluorescence tomography or UTE-MRI after nebulization of USRPs, and this is confirmed by histological analysis of the lung sections. The deposition of USRPs around the tumor nodules is sufficient to generate a radiosensitizing effect when the mice are subjected to a single dose of 10 Gy conventional radiation one day after inhalation (mean survival time of 112 days versus 77 days for irradiated mice without USRPs treatment). No apparent systemic toxicity or induction of inflammation is observed. These results demonstrate the theranostic properties of USRPs for the multimodal detection of lung tumors and improved radiotherapy after nebulization.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/terapia , Gadolínio , Neoplasias Pulmonares/terapia , Nanopartículas Metálicas , Nebulizadores e Vaporizadores , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Neoplasias Pulmonares/patologia , Camundongos
19.
NMR Biomed ; 27(8): 971-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24913958

RESUMO

One of the main reasons for the dismal prognosis of lung cancer is related to the late diagnosis of this pathology. In this study, we evaluated the potential of optimized lung MRI techniques as a completely non-invasive approach for non-small-cell lung cancer (NSCLC) MRI in vivo detection and follow-up in a mouse model of lung adenocarcinoma expressing the luciferase gene. Bioluminescent lung tumour cells were orthotopically implanted in immuno-deficient mice. Ultra-short echo-time (UTE) MRI free-breathing acquisitions were compared with standard gradient-echo lung MRI (FLASH) using both respiratory-gated and free-breathing protocols. The MRI findings were validated against bioluminescence imaging (BLI) and gold-standard histopathology analysis. Adenocarcinoma-like pathological tissue was successfully identified in all the mice with gated-FLASH and non-gated UTE MRI, and good tumour co-localization was found between MRI, BLI and histological analyses. An excellent or good correlation was found between the measured bioluminescent signal and the total tumour volumes quantified with UTE MRI or gated-FLASH MRI, respectively. No significant correlation was found when the tumours were segmented on non-gated MR FLASH images. MRI was shown to be a powerful imaging tool able to detect, quantify and longitudinally monitor the development of sub-millimetric NSCLCs. To our knowledge, this is the first study which proves the feasibility of a completely non-invasive MRI quantitative detection of lung adenocarcinoma in freely breathing mice. The absence of ionizing radiation and the high-resolution of MRI, along with the complete non-invasiveness and good reproducibility of the proposed non-gated protocol, make this imaging tool ideal for direct translational applications.


Assuntos
Neoplasias Pulmonares/diagnóstico , Imageamento por Ressonância Magnética , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Linhagem Celular Tumoral , Feminino , Seguimentos , Humanos , Medições Luminescentes , Camundongos Nus , Razão Sinal-Ruído , Fatores de Tempo
20.
Proc Natl Acad Sci U S A ; 111(25): 9247-52, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24927562

RESUMO

One of the main reasons for the dismal prognosis of lung cancer is related to the late diagnosis of this pathology. In this work, we evaluated the potential of optimized lung MRI techniques and nebulized ultrasmall multimodal gadolinium-based contrast agents [ultrasmall rigid platforms (USRPs)] as a completely noninvasive approach for non-small-cell lung cancer (NSCLC) in vivo detection. A mouse model of NSCLC expressing the luciferase gene was developed. Ultrashort echo-time free-breathing MRI acquisitions were performed before and after i.v. or intrapulmonary administration of the nanoparticles to identify and segment the tumor. After orotracheal or i.v. administration of USRPs, an excellent colocalization of the position the tumor with MRI, bioluminescence and fluorescence reflectance imaging, and histology was observed in all mice. Significantly higher signal enhancements and contrast-to-noise ratios were observed with orotracheal administration using lower doses, reducing the toxicity issues and the interobserver variability in tumor detection. The observations suggested the existence of an unknown original mechanism (different from the enhanced permeability and retention effect) responsible for this phenomenon. MRI and USRPs were shown to be powerful imaging tools able to detect, quantify, and longitudinally monitor the development of submillimetric NSCLCs. The absence of ionizing radiation and high resolution MRI, along with the complete noninvasiveness and good reproducibility of the proposed protocol, make this technique potentially translatable to humans. To our knowledge this is the first time that the advantages of an orotracheal administration route are demonstrated for the investigation of the pathomorphological changes due to NSCLCs.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Meios de Contraste/farmacologia , Gadolínio/farmacologia , Neoplasias Pulmonares/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Nanopartículas , Administração por Inalação , Animais , Linhagem Celular Tumoral , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , Nebulizadores e Vaporizadores , Transplante de Neoplasias , Radiografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA