Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 33(13): 2702-2716.e3, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37352854

RESUMO

Sleep is essential, but animals may forgo sleep to engage in other critical behaviors, such as feeding and reproduction. Previous studies have shown that female flies exhibit decreased sleep after mating, but our understanding of the process is limited. Here, we report that postmating nighttime sleep loss is modulated by diet and sleep deprivation, demonstrating a complex interaction among sleep, reproduction, and diet. We also find that female-specific pC1 neurons and sleep-promoting dorsal fan-shaped body (dFB) neurons are required for postmating sleep plasticity. Activating pC1 neurons leads to sleep suppression on standard fly culture media but has little sleep effect on sucrose-only food. Published connectome data suggest indirect, inhibitory connections among pC1 subtypes. Using calcium imaging, we show that activating the pC1e subtype inhibits dFB neurons. We propose that pC1 and dFB neurons integrate the mating status, food context, and sleep drive to modulate postmating sleep plasticity.


Assuntos
Proteínas de Drosophila , Distúrbios do Início e da Manutenção do Sono , Animais , Feminino , Drosophila/fisiologia , Proteínas de Drosophila/fisiologia , Sono/fisiologia , Privação do Sono , Drosophila melanogaster/fisiologia
2.
Neuron ; 110(13): 2044-2046, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35797958

RESUMO

The drive to sleep is strongly influenced by time of day, with temporal information conveyed through the circadian clock. In pursuit of the neural mechanisms underlying this process, in this issue of Neuron, Sun et al. identify a novel circuit that links circadian output neurons to sleep-promoting neurons within the mushroom bodies.


Assuntos
Relógios Circadianos , Proteínas de Drosophila , Animais , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Drosophila/fisiologia , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiologia , Neurônios/fisiologia , Sono/fisiologia
3.
Curr Biol ; 30(24): 5040-5048.e5, 2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-33065014

RESUMO

Behavioral outputs arise as a result of highly regulated yet flexible communication among neurons. The Drosophila circadian network includes 150 neurons that dictate the temporal organization of locomotor activity; under light-dark (LD) conditions, flies display a robust bimodal pattern. The pigment-dispersing factor (PDF)-positive small ventral lateral neurons (sLNv) have been linked to the generation of the morning activity peak (the "M cells"), whereas the Cryptochrome (CRY)-positive dorsal lateral neurons (LNds) and the PDF-negative sLNv are necessary for the evening activity peak (the "E cells") [1, 2]. While each group directly controls locomotor output pathways [3], an interplay between them along with a third dorsal cluster (the DN1ps) is necessary for the correct timing of each peak and for adjusting behavior to changes in the environment [4-7]. M cells set the phase of roughly half of the circadian neurons (including the E cells) through PDF [5, 8-10]. Here, we show the existence of synaptic input provided by the evening oscillator onto the M cells. Both structural and functional approaches revealed that E-to-M cell connectivity changes across the day, with higher excitatory input taking place before the day-to-night transition. We identified two different neurotransmitters, acetylcholine and glutamate, released by E cells that are relevant for robust circadian output. Indeed, we show that acetylcholine is responsible for the excitatory input from E cells to M cells, which show preferential responsiveness to acetylcholine during the evening. Our findings provide evidence of an excitatory feedback between circadian clusters and unveil an important plastic remodeling of the E cells' synaptic connections.


Assuntos
Relógios Biológicos/fisiologia , Drosophila melanogaster/fisiologia , Locomoção/fisiologia , Terminações Pré-Sinápticas/metabolismo , Acetilcolina/metabolismo , Animais , Animais Geneticamente Modificados , Ritmo Circadiano/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Retroalimentação Fisiológica , Ácido Glutâmico/metabolismo , Masculino , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Fotoperíodo
4.
Elife ; 92020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33084567

RESUMO

Sleep is essential but incompatible with other behaviors, and thus sleep drive competes with other motivations. We previously showed Drosophila males balance sleep and courtship via octopaminergic neurons that act upstream of courtship-regulating P1 neurons (Machado et al., 2017). Here, we show nutrition modulates the sleep-courtship balance and identify sleep-regulatory neurons downstream of P1 neurons. Yeast-deprived males exhibited attenuated female-induced nighttime sleep loss yet normal daytime courtship, which suggests male flies consider nutritional status in deciding whether the potential benefit of pursuing female partners outweighs the cost of losing sleep. Trans-synaptic tracing and calcium imaging identified dopaminergic neurons projecting to the protocerebral bridge (DA-PB) as postsynaptic partners of P1 neurons. Activation of DA-PB neurons led to reduced sleep in normally fed but not yeast-deprived males. Additional PB-projecting neurons regulated male sleep, suggesting several groups of PB-projecting neurons act downstream of P1 neurons to mediate nutritional modulation of the sleep-courtship balance.


Assuntos
Corte , Drosophila melanogaster/fisiologia , Estado Nutricional/fisiologia , Sono/fisiologia , Animais , Drosophila melanogaster/metabolismo , Feminino , Privação de Alimentos/fisiologia , Masculino , Neurônios/fisiologia
5.
Biol Open ; 8(1)2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30530810

RESUMO

In the fruit fly, Drosophila melanogaster, the daily cycle of rest and activity is a rhythmic behavior that relies on the activity of a small number of neurons. The small ventral lateral neurons (sLNvs) are considered key in the control of locomotor rhythmicity. Previous work from our laboratory has showed that these neurons undergo structural remodeling on their axonal projections on a daily basis. Such remodeling endows sLNvs with the possibility to make synaptic contacts with different partners at different times throughout the day, as has been previously described. By using different genetic tools to alter membrane excitability of the sLNv putative postsynaptic partners, we tested their functional role in the control of locomotor activity. We also used optical imaging to test the functionality of these contacts. We found that these different neuronal groups affect the consolidation of rhythmic activity, suggesting that non-circadian cells are part of the circuit that controls locomotor activity. Our results suggest that new neuronal groups, in addition to the well-characterized clock neurons, contribute to the operations of the circadian network that controls locomotor activity in D. melanogaster.

6.
Front Physiol ; 8: 864, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163208

RESUMO

The mammalian circadian system is controlled by a central oscillator located in the suprachiasmatic nuclei (SCN) of the hypothalamus, in which glia appears to play a prominent role. Gliomas originate from glial cells and are the primary brain tumors with the highest incidence and mortality. Optic pathway/hypothalamic gliomas account for 4-7% of all pediatric intracranial tumors. Given the anatomical location, which compromises both the circadian pacemaker and its photic input pathway, we decided to study whether the presence of gliomas in the hypothalamic region could alter circadian behavioral outputs. Athymic nude mice implanted with LN229 human glioma cells showed an increase in the endogenous period of the circadian clock, which was also less robust in terms of sustaining the free running period throughout 2 weeks of screening. We also found that implanted mice showed a slower resynchronization rate after an abrupt 6 h advance of the light-dark (LD) cycle, advanced phase angle, and a decreased direct effect of light in general activity (masking), indicating that hypothalamic tumors could also affect photic sensitivity of the circadian clock. Our work suggests that hypothalamic gliomas have a clear impact both on the endogenous pacemaking of the circadian system, as well as on the photic synchronization of the clock. These findings strongly suggest that the observation of altered circadian parameters in patients might be of relevance for glioma diagnosis.

7.
Front Physiol ; 8: 918, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29184510

RESUMO

A number of years ago we reported that ventral Lateral Neurons (LNvs), which are essential in the control of rest-activity cycles in Drosophila, undergo circadian remodeling of their axonal projections. This structural plasticity gives rise to changes in the degree of connectivity, which could provide a means of transmitting time of day information. Thus far, work from different laboratories has shown that circadian remodeling of adult projections relies on activity-dependent and -independent mechanisms. In terms of clock- dependent mechanisms, several neuronal types undergoing circadian remodeling hinted to a differential effect of clock genes; while per mutants exhibited poorly developed axonal terminals giving rise to low complexity arbors, tim mutants displayed a characteristic hyper branching phenotype, suggesting these genes could be playing additional roles to those ascribed to core clock function. To shed light onto this possibility we altered clock gene levels through RNAi- mediated downregulation and expression of a dominant negative form exclusively in the adult LNvs. These experiments confirmed that the LNv clock is necessary to drive the remodeling process. We next explored the contribution of glia to the structural plasticity of the small LNvs through acute disruption of their internal clock. Interestingly, impaired glial clocks also abolished circadian structural remodeling, without affecting other clock-controlled outputs. Taken together our data shows that both neuronal and glial clocks are recruited to define the architecture of the LNv projections along the day, thus enabling a precise reconfiguration of the circadian network.

8.
Neuropharmacology ; 108: 373-81, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27178133

RESUMO

The mammalian circadian system is mainly originated in a master oscillator located in the suprachiasmatic nuclei (SCN) in the hypothalamus. Previous reports from our and other groups have shown that the SCN are sensitive to systemic immune activation during the early night, through a mechanism that relies on the action of proinflammatory factors within this structure. Chemokine (C-C motif) ligand 2 (CCL2) is induced in the brain upon peripheral immune activation, and it has been shown to modulate neuronal physiology. In the present work we tested whether CCL2 might be involved in the response of the circadian clock to peripheral endotoxin administration. The CCL2 receptor, C-C chemokine receptor type 2 (CCR2), was detected in the SCN of mice, with higher levels of expression during the early night, when the clock is sensitive to immune activation. Ccl2 was induced in the SCN upon intraperitoneal lipopolysaccharide (LPS) administration. Furthermore, mice receiving an intracerebroventricular (Icv) administration of a CCL2 synthesis inhibitor (Bindarit), showed a reduction LPS-induced circadian phase changes and Icv delivery of CCL2 led to phase delays in the circadian clock. In addition, we tested the possibility that CCL2 might also be involved in the photic regulation of the clock. Icv administration of Bindarit did not modify the effects of light pulses on the circadian clock. In summary, we found that CCL2, acting at the SCN level is important for the circadian effects of immune activation.


Assuntos
Quimiocina CCL2/fisiologia , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Lipopolissacarídeos/toxicidade , Núcleo Supraquiasmático/fisiologia , Animais , Relógios Circadianos/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Injeções Intraventriculares , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Supraquiasmático/efeitos dos fármacos
9.
Chronobiol Int ; 31(5): 668-79, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24527954

RESUMO

UNLABELLED: Systemic low doses of the endotoxin lipopolysaccharide (LPS, 100 µg/kg) administered during the early night induce phase-delays of locomotor activity rhythms in mice. Our aim was to evaluate the role of tumor necrosis factor (Tnf)-alpha and its receptor 1/p55 (Tnfr1) in the modulation of LPS-induced circadian effects on the suprachiasmatic nucleus (SCN). We observed that Tnfr1-defective mice (Tnfr1 KO), although exhibiting similar circadian behavior and light response to that of control mice, did not show LPS-induced phase-delays of locomotor activity rhythms, nor LPS-induced cFos and Per2 expression in the SCN and Per1 expression in the paraventricular hypothalamic nucleus (PVN) as compared to wild-type (WT) mice. We also analyzed Tnfr1 expression in the SCN of WT mice, peaking during the early night, when LPS has a circadian effect. Peripheral inoculation of LPS induced an increase in cytokine/chemokine levels (Tnf, Il-6 and Ccl2) in the SCN and in the PVN. In conclusion, in this study, we show that LPS-induced circadian responses are mediated by Tnf. Our results also suggest that this cytokine stimulates the SCN after LPS peripheral inoculation; and the time-related effect of LPS (i.e. phase shifts elicited only at early night) might depend on the increased levels of Tnfr1 expression. We also confirmed that LPS modulates clock gene expression in the SCN and PVN in WT but not in Tnfr1 KO mice. HIGHLIGHTS: We demonstrate a fundamental role for Tnf and its receptor in circadian modulation by immune stimuli at the level of the SCN biological clock.


Assuntos
Relógios Biológicos , Ritmo Circadiano , Atividade Motora , Transdução de Sinais , Núcleo Supraquiasmático/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Relógios Biológicos/efeitos dos fármacos , Relógios Biológicos/efeitos da radiação , Quimiocina CCL2/metabolismo , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/efeitos da radiação , Esquema de Medicação , Interleucina-6/metabolismo , Luz , Lipopolissacarídeos/administração & dosagem , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Atividade Motora/efeitos da radiação , Núcleo Hipotalâmico Paraventricular/metabolismo , Fotoperíodo , Receptores Tipo I de Fatores de Necrose Tumoral/deficiência , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Núcleo Supraquiasmático/efeitos dos fármacos , Núcleo Supraquiasmático/efeitos da radiação , Fatores de Tempo
10.
J Immunol ; 191(9): 4656-64, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24062487

RESUMO

The immune and the circadian systems interact in a bidirectional fashion. The master circadian oscillator, located in the suprachiasmatic nuclei (SCN) of the hypothalamus, responds to peripheral and local immune stimuli, such as proinflammatory cytokines and bacterial endotoxin. Astrocytes exert several immune functions in the CNS, and there is growing evidence that points toward a role of these cells in the regulation of circadian rhythms. The aim of this work was to assess the response of SCN astrocytes to immune stimuli, particularly to the proinflammatory cytokine TNF-α. TNF-α applied to cultures of SCN astrocytes from Per2(luc) knockin mice altered both the phase and amplitude of PER2 expression rhythms, in a phase-dependent manner. Furthermore, conditioned media from SCN astrocyte cultures transiently challenged with TNF-α induced an increase in Per1 expression in NIH 3T3 cells, which was blocked by TNF-α antagonism. In addition, these conditioned media could induce phase shifts in SCN PER2 rhythms and, when administered intracerebroventricularly, induced phase delays in behavioral circadian rhythms and SCN activation in control mice, but not in TNFR-1 mutants. In summary, our results show that TNF-α modulates the molecular clock of SCN astrocytes in vitro, and also that, in response to this molecule, SCN astrocytes can modulate clock gene expression in other cells and tissues, and induce phase shifts in a circadian behavioral output in vivo. These findings suggest a role for astroglial cells in the alteration of circadian timing by immune activation.


Assuntos
Astrócitos/imunologia , Astrócitos/metabolismo , Relógios Circadianos/fisiologia , Núcleo Supraquiasmático/citologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Linhagem Celular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células NIH 3T3 , Proteínas Circadianas Period/biossíntese , Proteínas Circadianas Period/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética
11.
J Physiol Paris ; 107(4): 310-22, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23545147

RESUMO

Circadian rhythms are endogenous and need to be continuously entrained (synchronized) with the environment. Entrainment includes both coupling internal oscillators to external periodic changes as well as synchrony between the central clock and peripheral oscillators, which have been shown to exhibit different phases and resynchronization speed. Temporal desynchronization induces diverse physiological alterations that ultimately decrease quality of life and induces pathological situations. Indeed, there is a considerable amount of evidence regarding the deleterious effect of circadian dysfunction on overall health or on disease onset and progression, both in human studies and in animal models. In this review we discuss the general features of circadian entrainment and introduce diverse experimental models of desynchronization. In addition, we focus on metabolic, immune and cognitive alterations under situations of acute or chronic circadian desynchronization, as exemplified by jet-lag and shiftwork schedules. Moreover, such situations might lead to an enhanced susceptibility to diverse cancer types. Possible interventions (including light exposure, scheduled timing for meals and use of chronobiotics) are also discussed.


Assuntos
Transtornos Cronobiológicos/fisiopatologia , Transtornos Cronobiológicos/terapia , Ritmo Circadiano/fisiologia , Animais , Transtornos Cronobiológicos/psicologia , Humanos , Síndrome do Jet Lag/fisiopatologia , Síndrome do Jet Lag/psicologia , Síndrome do Jet Lag/terapia , Melatonina/fisiologia , Fototerapia/métodos , Fatores de Tempo
12.
J Circadian Rhythms ; 11(1): 2, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23369611

RESUMO

BACKGROUND: The relation between circadian dysregulation and cancer incidence and progression has become a topic of major interest over the last decade. Also, circadian timing has gained attention regarding the use of chronopharmacology-based therapeutics. Given its lack of functional T lymphocytes, due to a failure in thymus development, mice carrying the Foxn1(Δ/Δ) mutation (nude mice) have been traditionally used in studies including implantation of xenogeneic tumors. Since the immune system is able to modulate the circadian clock, we investigated if there were alterations in the circadian system of the athymic mutant mice. METHODS: General activity circadian rhythms in 2-4 month-old Foxn1(Δ/Δ) mice (from Swiss Webster background) and their corresponding wild type (WT) controls was recorded. The response of the circadian system to different manipulations (constant darkness, light pulses and shifts in the light-dark schedule) was analyzed. RESULTS: Free-running periods of athymic mice and their wild type counterpart were 23.86 ± 0.03 and 23.88 ± 0.05 hours, respectively. Both strains showed similar phase delays in response to 10 or 120 minutes light pulses applied in the early subjective night and did not differ in the number of c-Fos-expressing cells in the suprachiasmatic nuclei, after a light pulse at circadian time (CT) 15. Similarly, the two groups showed no significant difference in the time needed for resynchronization after 6-hour delays or advances in the light-dark schedule. The proportion of diurnal activity, phase-angle with the zeitgeber, subjective night duration and other activity patterns were similar between the groups. CONCLUSIONS: Since athymic Foxn1(Δ/Δ) mice presented no differences with the WT controls in the response of the circadian system to the experimental manipulations performed in this work, we conclude that they represent a good model in studies that combine xenograft implants with either alteration of the circadian schedules or chronopharmacological approaches to therapeutics.

13.
Chronobiol Int ; 29(6): 715-23, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22734572

RESUMO

We previously reported that early night peripheral bacterial lipopolysaccharide (LPS) injection produces phase delays in the circadian rhythm of locomotor activity in mice. We now assess the effects of proinflammatory cytokines on circadian physiology, including their role in LPS-induced phase shifts. First, we investigated whether differential systemic induction of classic proinflammatory cytokines could explain the time-specific behavioral effects of peripheral LPS. Induction levels for plasma interleukin (IL)-1α, IL-1ß, IL-6, or tumor necrosis factor (TNF)-α did not differ between animals receiving a LPS challenge in the early day or early night. We next tested the in vivo effects of central proinflammatory cytokines on circadian physiology. We found that intracerebroventricular (i.c.v.) delivery of TNF-α or interleukin IL-1ß induced phase delays on wheel-running activity rhythms. Furthermore, we analyzed if these cytokines mediate the LPS-induced phase shifts and found that i.c.v. administration of soluble TNF-α receptor (but not an IL-1ß antagonistic) prior to LPS stimulation inhibited the phase delays. Our work suggests that the suprachiasmatic nucleus (SCN) responds to central proinflammatory cytokines in vivo, producing phase shifts in locomotor activity rhythms. Moreover, we show that the LPS-induced phase delays are mediated through the action of TNF-α at the central level, and that systemic induction of proinflammatory cytokines might be necessary, but not sufficient, for this behavioral outcome.


Assuntos
Comportamento Animal , Ritmo Circadiano , Citocinas/imunologia , Atividade Motora , Núcleo Supraquiasmático/imunologia , Animais , Lipopolissacarídeos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Supraquiasmático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA