Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Med ; 2(7): 864-883.e9, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34296202

RESUMO

BACKGROUND: Evidence suggests an important role for gut-microbiota dysbiosis in the development of rheumatoid arthritis (RA). The link between changes in gut bacteria and the development of joint inflammation is missing. Here, we address whether there are changes to the gut environment and how they contribute to arthritis pathogenesis. METHODS: We analyzed changes in markers of gut permeability, damage, and inflammation in peripheral blood and serum of RA patients. Serum, intestines, and lymphoid organs isolated from K/BxN mice with spontaneous arthritis or from wild-type, genetically modified interleukin (IL)-10R-/-or claudin-8-/-mice with induced arthritis were analyzed by immunofluorescence/histology, ELISA, and flow cytometry. FINDINGS: RA patients display increased levels of serum markers of gut permeability and damage and cellular gut-homing markers, both parameters positively correlating with disease severity. Arthritic mice display increased gut permeability from early stages of disease, as well as bacterial translocation, inflammatory gut damage, increases in interferon γ (IFNγ)+and decreases in IL-10+intestinal-infiltrating leukocyte frequency, and reduced intestinal epithelial IL-10R expression. Mechanistically, both arthritogenic bacteria and leukocytes are required to disrupt gut-barrier integrity. We show that exposing intestinal organoids to IFNγ reduces IL-10R expression by epithelial cells and that mice lacking epithelial IL-10R display increased intestinal permeability and exacerbated arthritis. Claudin-8-/-mice with constitutively increased gut permeability also develop worse joint disease. Treatment of mice with AT-1001, a molecule that prevents development of gut permeability, ameliorates arthritis. CONCLUSIONS: We suggest that breakdown of gut-barrier integrity contributes to arthritis development and propose restoration of gut-barrier homeostasis as a new therapeutic approach for RA. FUNDING: Funded by Versus Arthritis (21140 and 21257) and UKRI/MRC (MR/T000910/1).


Assuntos
Artrite Reumatoide , Microbioma Gastrointestinal , Enteropatias , Animais , Artrite Reumatoide/metabolismo , Disbiose/metabolismo , Humanos , Inflamação/metabolismo , Enteropatias/metabolismo , Mucosa Intestinal/metabolismo , Camundongos
3.
Proc Natl Acad Sci U S A ; 117(16): 9054-9063, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32295878

RESUMO

Invariant natural killer T (iNKT) cells serve as early rapid responders in the innate immune response to self-derived autoantigens and pathogen-derived danger signals and antigens. iNKT cells can serve both as helpers for effector B cells and negatively regulate autoreactive B cells. Specifically, iNKT cells drive B cell proliferation, class switch, and antibody production to induce primary antigen-specific immune responses. On the other hand, inflammasome-mediated activation drives accumulation of neutrophils, which license iNKT cells to negatively regulate autoreactive B cells via Fas ligand (FasL). This positions iNKT cells at an apex to support or inhibit B cell responses in inflammation. However, it is unknown which effector mechanism dominates in the face of cognate glycolipid activation during chronic inflammation, as might result from glycolipid vaccination or infection during chronic autoimmune disease. We stimulated iNKT cells by cognate glycolipid antigen α-galactosylceramide (αGalCer) and measured B cell activation during interleukin 18 (IL-18)-induced chronic inflammation. Moreover, glycolipid-activated iNKT cells increased the serum concentration of autoantibodies, frequency of germinal center (GC) B cells, and antigen-specific plasma cells induced during chronic IL-18-mediated inflammation, as compared with IL-18 alone. Further, activation of iNKT cells via cognate glycolipid during IL-18-mediated inflammation overrides the licensing function of neutrophils, instead inducing iNKT follicular helper (iNKTfh) cells that in turn promote autoimmunity. Thus, our data demonstrate that glycolipids which engage iNKT cells support antigen-specific B cell help during inflammasome-mediated inflammation.


Assuntos
Anticorpos Antinucleares/imunologia , Autoimunidade , Galactosilceramidas/imunologia , Inflamação/imunologia , Células T Matadoras Naturais/imunologia , Animais , Anticorpos Antinucleares/sangue , Linfócitos B/imunologia , Doença Crônica , Modelos Animais de Doenças , Feminino , Humanos , Inflamação/sangue , Injeções Intraperitoneais , Interleucina-18/administração & dosagem , Interleucina-18/imunologia , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/imunologia
4.
Circulation ; 138(22): 2513-2526, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-29997115

RESUMO

BACKGROUND: Atherosclerotic cardiovascular disease is a chronic inflammatory process initiated when cholesterol-carrying low-density lipoprotein (LDL) is retained in the arterial wall. CD4+ T cells, some of which recognize peptide components of LDL as antigen, are recruited to the forming lesion, resulting in T-cell activation. Although these T cells are thought to be proatherogenic, LDL immunization reduces disease in experimental animals. These seemingly contradictory findings have hampered the development of immune-based cardiovascular therapy. The present study was designed to clarify how activation of LDL-reactive T cells impacts on metabolism and vascular pathobiology. METHODS: We have developed a T-cell receptor-transgenic mouse model to characterize the effects of immune reactions against LDL. Through adoptive cell transfers and cross-breeding to hypercholesterolemic mice expressing the antigenic human LDL protein apolipoprotein B-100, we evaluate the effects on atherosclerosis. RESULTS: A subpopulation of LDL-reactive T cells survived clonal selection in the thymus, developed into T follicular helper cells in lymphoid tissues on antigen recognition, and promoted B-cell activation. This led to production of anti-LDL immunoglobulin G antibodies that enhanced LDL clearance through immune complex formation. Furthermore, the cellular immune response to LDL was associated with increased cholesterol excretion in feces and with reduced vascular inflammation. CONCLUSIONS: These data show that anti-LDL immunoreactivity evokes 3 atheroprotective mechanisms: antibody-dependent LDL clearance, increased cholesterol excretion, and reduced vascular inflammation.


Assuntos
Aterosclerose/prevenção & controle , Linfócitos T CD4-Positivos/imunologia , Colesterol/sangue , Lipoproteínas LDL/imunologia , Animais , Anticorpos/imunologia , Apolipoproteína B-100/sangue , Apolipoproteínas E , Aterosclerose/patologia , Linfócitos B/citologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/metabolismo , Modelos Animais de Doenças , Lipoproteínas LDL/administração & dosagem , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo
5.
Nat Commun ; 9(1): 2067, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29802242

RESUMO

Testosterone deficiency in men is associated with increased risk for autoimmunity and increased B cell numbers through unknown mechanisms. Here we show that testosterone regulates the cytokine BAFF, an essential survival factor for B cells. Male mice lacking the androgen receptor have increased splenic B cell numbers, serum BAFF levels and splenic Baff mRNA. Testosterone deficiency by castration causes expansion of BAFF-producing fibroblastic reticular cells (FRCs) in spleen, which may be coupled to lower splenic noradrenaline levels in castrated males, as an α-adrenergic agonist decreases splenic FRC number in vitro. Antibody-mediated blockade of the BAFF receptor or treatment with the neurotoxin 6-hydroxydopamine revert the increased splenic B cell numbers induced by castration. Among healthy men, serum BAFF levels are higher in men with low testosterone. Our study uncovers a previously unrecognized regulation of BAFF by testosterone and raises important questions about BAFF in testosterone-mediated protection against autoimmunity.


Assuntos
Doenças Autoimunes/metabolismo , Fator Ativador de Células B/imunologia , Fator Ativador de Células B/metabolismo , Linfócitos B/imunologia , Testosterona/metabolismo , Agonistas alfa-Adrenérgicos/farmacologia , Animais , Doenças Autoimunes/imunologia , Fator Ativador de Células B/sangue , Receptor do Fator Ativador de Células B/antagonistas & inibidores , Receptor do Fator Ativador de Células B/metabolismo , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Castração , Humanos , Masculino , Camundongos , Camundongos Knockout , Modelos Animais , Norepinefrina/metabolismo , Oxidopamina/farmacologia , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Baço/citologia , Baço/efeitos dos fármacos , Baço/imunologia , Testosterona/sangue , Testosterona/deficiência , Testosterona/imunologia
6.
J Immunol ; 197(7): 2618-26, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27559051

RESUMO

Autoimmune diseases are characterized by pathogenic immune responses to self-antigens. In systemic lupus erythematosus (SLE), many self-antigens are found in apoptotic cells (ACs), and defects in removal of ACs from the body are linked to a risk for developing SLE. This includes pathological memory that gives rise to disease flares. In this study, we investigated how memory to AC-derived self-antigens develops and the contribution of self-memory to the development of lupus-related pathology. Multiple injections of ACs without adjuvant into wild-type mice induce a transient primary autoimmune response without apparent anti-nuclear Ab reactivity or kidney pathology. Interestingly, as the transient Ab response reached baseline, a single boost injection fully recalled the immune response to ACs, and this memory response was furthermore transferable into naive mice. Additionally, the memory response contains elements of pathogenicity, accompanied by selective memory to selective Ags. Thus, we provide evidence for a selective self-memory that underlies progression of the response to self-antigens with implications for SLE development therapy.


Assuntos
Apoptose/imunologia , Autoanticorpos/imunologia , Autoantígenos/imunologia , Memória Imunológica/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Animais , Lúpus Eritematoso Sistêmico/terapia , Camundongos , Camundongos Endogâmicos C57BL
7.
Proc Natl Acad Sci U S A ; 112(16): E2030-8, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25848033

RESUMO

The B-cell response in atherosclerosis is directed toward oxidation-specific epitopes such as phosphorylcholine (PC) that arise during disease-driven oxidation of self-antigens. PC-bearing antigens have been used to induce atheroprotective antibodies against modified low-density lipoproteins (oxLDL), leading to plaque reduction. Previous studies have found that B-cell transfer from aged atherosclerotic mice confers protection to young mice, but the mechanism is unknown. Here, we dissected the atheroprotective response in the spleen and found an ongoing germinal center reaction, accumulation of antibody-forming cells, and inflammasome activation in apolipoprotein E-deficient mice (Apoe(-/-)). Specific B-cell clone expansion involved the heavy chain variable region (Vh) 5 and Vh7 B-cell receptor families that harbor anti-PC reactivity. oxLDL also accumulated in the spleen. To investigate whether protection could be induced by self-antigens alone, we injected apoptotic cells that carry the same oxidation-specific epitopes as oxLDL. This treatment reduced serum cholesterol and inhibited the development of atherosclerosis in a B-cell-dependent manner. Thus, we conclude that the spleen harbors a protective B-cell response that is initiated in atherosclerosis through sterile inflammation. These data highlight the importance of the spleen in atherosclerosis-associated immunity.


Assuntos
Aterosclerose/imunologia , Linfócitos B/imunologia , Epitopos/imunologia , Inflamação/imunologia , Baço/imunologia , Baço/patologia , Envelhecimento/patologia , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/metabolismo , Apoptose , Aterosclerose/patologia , Colesterol/metabolismo , Células Clonais , Centro Germinativo/imunologia , Inflamassomos/metabolismo , Lipoproteínas LDL/metabolismo , Ativação Linfocitária/imunologia , Camundongos Endogâmicos C57BL , Oxirredução , Fosfatidilcolinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA