Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Trends Mol Med ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38772764

RESUMO

Breast cancer (BCa) is a prevalent malignancy that predominantly affects women around the world. Somatic copy number alterations (CNAs) are tumor-specific amplifications or deletions of DNA segments that often drive BCa development and therapy resistance. Hence, the complex patterns of CNAs complement BCa classification systems. In addition, understanding the precise contributions of CNAs is essential for tailoring personalized treatment approaches. This review highlights how tumor evolution drives the acquisition of CNAs, which in turn shape the genomic landscapes of BCas. It also discusses advanced methodologies for identifying recurrent CNAs, studying CNAs in BCa and their clinical impact.

2.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612786

RESUMO

Brain metastasis is a significant challenge for some breast cancer patients, marked by its aggressive nature, limited treatment options, and poor clinical outcomes. Immunotherapies have emerged as a promising avenue for brain metastasis treatment. B7-H3 (CD276) is an immune checkpoint molecule involved in T cell suppression, which is associated with poor survival in cancer patients. Given the increasing number of clinical trials using B7-H3 targeting CAR T cell therapies, we examined B7-H3 expression across breast cancer subtypes and in breast cancer brain metastases to assess its potential as an interventional target. B7-H3 expression was investigated using immunohistochemistry on tissue microarrays of three clinical cohorts: (i) unselected primary breast cancers (n = 347); (ii) brain metastatic breast cancers (n = 61) and breast cancer brain metastases (n = 80, including a subset of 53 patient-matched breast and brain metastasis cases); and (iii) mixed brain metastases from a range of primary tumours (n = 137). In primary breast cancers, B7-H3 expression significantly correlated with higher tumour grades and aggressive breast cancer subtypes, as well as poorer 5-year survival outcomes. Subcellular localisation of B7-H3 impacted breast cancer-specific survival, with cytoplasmic staining also correlating with a poorer outcome. Its expression was frequently detected in brain metastases from breast cancers, with up to 90% expressing B7-H3. However, not all brain metastases showed high levels of expression, with those from colorectal and renal tumours showing a low frequency of B7-H3 expression (0/14 and 2/16, respectively). The prevalence of B7-H3 expression in breast cancers and breast cancer brain metastases indicates potential opportunities for B7-H3 targeted therapies in breast cancer management.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Mama , Encéfalo , Agressão , Fatores de Transcrição , Antígenos B7/genética
3.
Trends Pharmacol Sci ; 45(3): 210-224, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38355324

RESUMO

Cancer development and therapy resistance are driven by chromosomal instability (CIN), which causes chromosome gains and losses (i.e., aneuploidy) and structural chromosomal alterations. Technical limitations and knowledge gaps have delayed therapeutic targeting of CIN and aneuploidy in cancers. However, our toolbox for creating and studying aneuploidy in cell models has greatly expanded recently. Moreover, accumulating evidence suggests that seven conventional antimitotic chemotherapeutic drugs achieve clinical response by inducing CIN instead of mitotic arrest, although additional anticancer activities may also contribute in vivo. In this review, we discuss these recent developments. We also highlight new discoveries, which together show that 25 chromosome arm aneuploidies (CAAs) may be targetable by 36 drugs across 14 types of cancer. Collectively, these advances offer many new opportunities to improve cancer treatment.


Assuntos
Aneuploidia , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Instabilidade Cromossômica
4.
Int J Oral Sci ; 16(1): 14, 2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38368395

RESUMO

Oral cancer (OC) is the most common form of head and neck cancer. Despite the high incidence and unfavourable patient outcomes, currently, there are no biomarkers for the early detection of OC. This study aims to discover, develop, and validate a novel saliva-based microRNA signature for early diagnosis and prediction of OC risk in oral potentially malignant disorders (OPMD). The Cancer Genome Atlas (TCGA) miRNA sequencing data and small RNA sequencing data of saliva samples were used to discover differentially expressed miRNAs. Identified miRNAs were validated in saliva samples of OC (n = 50), OPMD (n = 52), and controls (n = 60) using quantitative real-time PCR. Eight differentially expressed miRNAs (miR-7-5p, miR-10b-5p, miR-182-5p, miR-215-5p, miR-431-5p, miR-486-3p, miR-3614-5p, and miR-4707-3p) were identified in the discovery phase and were validated. The efficiency of our eight-miRNA signature to discriminate OC and controls was: area under curve (AUC): 0.954, sensitivity: 86%, specificity: 90%, positive predictive value (PPV): 87.8% and negative predictive value (NPV): 88.5% whereas between OC and OPMD was: AUC: 0.911, sensitivity: 90%, specificity: 82.7%, PPV: 74.2% and NPV: 89.6%. We have developed a risk probability score to predict the presence or risk of OC in OPMD patients. We established a salivary miRNA signature that can aid in diagnosing and predicting OC, revolutionising the management of patients with OPMD. Together, our results shed new light on the management of OC by salivary miRNAs to the clinical utility of using miRNAs derived from saliva samples.


Assuntos
Neoplasias de Cabeça e Pescoço , MicroRNAs , Neoplasias Bucais , Lesões Pré-Cancerosas , Humanos , MicroRNAs/genética , Saliva , Biomarcadores Tumorais/genética , Neoplasias Bucais/diagnóstico , Neoplasias Bucais/genética
5.
Nucleic Acids Res ; 52(3): 1173-1187, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38084915

RESUMO

Efficient DNA repair and limitation of genome rearrangements rely on crosstalk between different DNA double-strand break (DSB) repair pathways, and their synchronization with the cell cycle. The selection, timing and efficacy of DSB repair pathways are influenced by post-translational modifications of histones and DNA damage repair (DDR) proteins, such as phosphorylation. While the importance of kinases and serine/threonine phosphatases in DDR have been extensively studied, the role of tyrosine phosphatases in DNA repair remains poorly understood. In this study, we have identified EYA4 as the protein phosphatase that dephosphorylates RAD51 on residue Tyr315. Through its Tyr phosphatase activity, EYA4 regulates RAD51 localization, presynaptic filament formation, foci formation, and activity. Thus, it is essential for homologous recombination (HR) at DSBs. DNA binding stimulates EYA4 phosphatase activity. Depletion of EYA4 decreases single-stranded DNA accumulation following DNA damage and impairs HR, while overexpression of EYA4 in cells promotes dephosphorylation and stabilization of RAD51, and thereby nucleoprotein filament formation. Our data have implications for a pathological version of RAD51 in EYA4-overexpressing cancers.


Assuntos
Rad51 Recombinase , Transativadores , DNA , Reparo do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Recombinação Homóloga/genética , Fosfoproteínas Fosfatases/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Tirosina/genética , Humanos , Transativadores/metabolismo
6.
Mutat Res Rev Mutat Res ; 793: 108477, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37977279

RESUMO

BACKGROUND: Head and neck cancer is the seventh most common malignancy globally. Head and neck squamous cell carcinoma (HNSCC) originates from squamous cells and 90% of HNC are HNSCC. The gold standard for diagnosing HNSCC is tissue biopsy. However, given tumour heterogeneity, biopsies may miss important cancer-associated molecular signatures, and more importantly, after the tumour is excised, there is no means of tracking response to treatment in patients. Captured under liquid biopsy, circulating tumour DNA (ctDNA), may identify in vivo molecular genotypes and complements tumour tissue analysis in cancer management. A systematic search was conducted in PubMed, Embase, Scopus and the Cochran Library between 2012 to early 2023 on ctDNA in HNSCC using publications written in English. We summarise 20 studies that compared mutational profiles between tumour tissue DNA (tDNA) and ctDNA, using a cohort of 631 HNSCC patients and 139 controls. Among these studies, the concordance rates varied greatly and the most mutated and the most concordant gene was TP53, followed by PIK3CA, CDKN2A, NOTCH1 and FAT1. Concordant variants were mainly found in Stage IV tumours, and the mutation type is mostly single nucleotide variants (SNV). We conclude that, as a biomarker for HNSCC, ctDNA demonstrates great promise as it recapitulates tumour genotypes, however additional multi-central trials are needed.

7.
Mol Cancer ; 22(1): 158, 2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777742

RESUMO

The Eyes Absent (EYA) family of proteins is an atypical group of four dual-functioning protein phosphatases (PP), which have been linked to many vital cellular processes and organogenesis pathways. The four family members of this PP family possess transcriptional activation and phosphatase functions, with serine/threonine and tyrosine phosphatase domains. EYA4 has been associated with several human cancers, with tumor-suppressing and tumor-promoting roles. However, EYA4 is the least well-characterized member of this unique family of PP, with its biological functions and molecular mechanisms in cancer progression, particularly in breast cancer, still largely unknown. In the present study, we found that the over-expression of EYA4 in breast tissue leads to an aggressive and invasive breast cancer phenotype, while the inhibition of EYA4 reduced tumorigenic properties of breast cancer cells in vitro and in vivo. Cellular changes downstream of EYA4, including cell proliferation and migration, may explain the increased metastatic power of breast cancer cells over-expressing EYA4. Mechanistically, EYA4 prevents genome instability by inhibiting the accumulation of replication-associated DNA damage. Its depletion results in polyploidy as a consequence of endoreplication, a phenomenon that can occur in response to stress. The absence of EYA4 leads to spontaneous replication stress characterized by the activation of the ATR pathway, sensitivity to hydroxyurea, and accumulation of endogenous DNA damage as indicated by increased γH2AX levels. In addition, we show that EYA4, specifically its serine/threonine phosphatase domain, plays an important and so far, unexpected role in replication fork progression. This phosphatase activity is essential for breast cancer progression and metastasis. Taken together, our data indicate that EYA4 is a novel potential breast cancer oncogene that supports primary tumor growth and metastasis. Developing therapeutics aimed at the serine/threonine phosphatase activity of EYA4 represents a robust strategy for killing breast cancer cells, to limit metastasis and overcome chemotherapy resistance caused by endoreplication and genomic rearrangements.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Transativadores/genética , Transativadores/metabolismo , Linhagem Celular Tumoral , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo , Fosfoproteínas Fosfatases/genética , Serina
8.
Transl Oncol ; 37: 101760, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37611490

RESUMO

Epithelial-mesenchymal plasticity (EMP) is a hallmark of cancer. By enabling cells to shift between different morphological and functional states, EMP promotes invasion, metastasis and therapy resistance. We report that near-diploid non-cancerous human epithelial lung cells spontaneously shift along the EMP spectrum without genetic changes. Strikingly, more than half of single cell-derived clones adopt a mesenchymal morphology. We independently characterise epithelial-like and mesenchymal-like clones. Mesenchymal clones lose epithelial markers, display larger cell aspect ratios and lower motility, with mostly unaltered proliferation rates. Stemness marker expression and metabolic rewiring diverge independently of phenotypes. In 3D culture, more epithelial clones become mesenchymal-like. Thus, non-cancerous epithelial cells may acquire cancer metastasis-associated features prior to genetic alterations and cancerous transformation.

9.
Clin Breast Cancer ; 23(7): e480-e490.e3, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37596147

RESUMO

BACKGROUND: About 70%-80% of breast cancers (BCs) express estrogen receptors (ER-positive). MicroRNAs (miRNAs) are a group of small endogenous noncoding RNAs that play a critical regulatory role in cancer development and progression, including in BC. MiRNA deficiency promotes the development of BCs. MiR-143-5p is one of the most commonly dysregulated miRNAs in BC but its role as a tumor suppressor remains unclear. MATERIALS AND METHODS: MiR-143-3p and -5p expression in breast tissue was analyzed using TCGA and StarBase databases. Expression in BC subclasses and survival analyses were conducted. Clinical samples were collected, cell cultures created, and gene expression assays performed following previous studies. Protein expression, luciferase reporter, wound healing, DAPI staining, cell cycle, colony formation, spheroid, CD44 FACS, and proliferation assays were conducted following various protocols. RESULTS: Here, we find that both miR-143-3p and miR-143-5p levels are considerably lower in BC tissue compared to normal breast tissue and low miR-143 expression predicts poor prognosis in ER+ BC patients. In-depth analyses identified 3 miR-143-5p binding sites in the 3' untranslated region (UTR) of the DNA binding protein High Mobility Group AT-Hook 2 (HMGA2). Luciferase reporter assays using wild-type and mutant HMGA2 3'UTR sequences and Western blot analyses demonstrated that HMGA2 is a direct and bona fide miR-143-5p target in BC cells. In addition, we show that restoration of miR-143-5p expression suppresses metastasis-related features of ER+ BC cells, including reduced tumor cell migration, increased E-cadherin expression, and decreased vimentin and N-cadherin expression. Furthermore, miR-143-5p reduces cell proliferation, cell cycle entry, and stemness, while promoting apoptosis moderately. Finally, patient sample pathway analyses demonstrated that these mechanisms are also active in BC. CONCLUSIONS: Altogether, our findings shed new light on miR-143-5p's anticancer biological functions in BC progression by directly targeting HMGA2. This suggests that restoration of miR-143-5p could be a promising new therapeutic approach for the treatment of ER+ BC.


Assuntos
Neoplasias da Mama , MicroRNAs , Feminino , Humanos , Mama/metabolismo , Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo
10.
J Biomed Sci ; 30(1): 65, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37559138

RESUMO

Head and Neck cancers (HNC) are a heterogeneous group of upper aero-digestive tract cancer and account for 931,922 new cases and 467,125 deaths worldwide. About 90% of these cancers are of squamous cell origin (HNSCC). HNSCC is associated with excessive tobacco and alcohol consumption and infection with oncogenic viruses. Genotyping tumour tissue to guide clinical decision-making is becoming common practice in modern oncology, but in the management of patients with HNSCC, cytopathology or histopathology of tumour tissue remains the mainstream for diagnosis and treatment planning. Due to tumour heterogeneity and the lack of access to tumour due to its anatomical location, alternative methods to evaluate tumour activities are urgently needed. Liquid biopsy approaches can overcome issues such as tumour heterogeneity, which is associated with the analysis of small tissue biopsy. In addition, liquid biopsy offers repeat biopsy sampling, even for patients with tumours with access limitations. Liquid biopsy refers to biomarkers found in body fluids, traditionally blood, that can be sampled to provide clinically valuable information on both the patient and their underlying malignancy. To date, the majority of liquid biopsy research has focused on blood-based biomarkers, such as circulating tumour DNA (ctDNA), circulating tumour cells (CTCs), and circulating microRNA. In this review, we will focus on ctDNA as a biomarker in HNSCC because of its robustness, its presence in many body fluids, adaptability to existing clinical laboratory-based technology platforms, and ease of collection and transportation. We will discuss mechanisms of ctDNA release into circulation, technological advances in the analysis of ctDNA, ctDNA as a biomarker in HNSCC management, and some of the challenges associated with translating ctDNA into clinical and future perspectives. ctDNA provides a minimally invasive method for HNSCC prognosis and disease surveillance and will pave the way in the future for personalized medicine, thereby significantly improving outcomes and reducing healthcare costs.


Assuntos
DNA Tumoral Circulante , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , DNA Tumoral Circulante/genética , Biomarcadores Tumorais/genética , Neoplasias de Cabeça e Pescoço/diagnóstico , Neoplasias de Cabeça e Pescoço/genética , Prognóstico
11.
Res Sq ; 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37292941

RESUMO

The Eyes Absent (EYA) family of proteins is an atypical group of four dual-functioning protein phosphatases, which have been linked to many vital cellular processes and organogenesis pathways. Like the other isoforms, EYA4 possesses transcriptional activation and phosphatase functions, with serine/threonine and tyrosine phosphatase domains. EYA4 has been associated with several human cancers, with tumor-suppressing and tumor-promoting roles. However, EYA4 is the least well-characterized member of this unique family of phosphatases, with its biological functions and molecular mechanisms in cancer progression, particularly in breast cancer, still largely unknown. In the present study, we found that the over-expression of EYA4 in breast tissue leads to an aggressive and invasive breast cancer phenotype, while the inhibition of EYA4 reduced tumorigenic properties of breast cancer cells in vitro and in vivo . Cellular changes downstream of EYA4, including cell proliferation and migration, may explain the increased metastatic power of breast cancer cells over-expressing EYA4. Mechanistically, EYA4 prevents genome instability by inhibiting the accumulation of replication-associated DNA damage. Its depletion results in polyploidy as a consequence of endoreplication, a phenomenon that can occur in response to stress. The absence of EYA4 leads to spontaneous replication stress characterized by the activation of the ATR pathway, sensitivity to hydroxyurea, and accumulation of endogenous DNA damage as indicated by increased γH2AX levels. In addition, we show that EYA4, specifically its serine/threonine phosphatase domain, plays an important and so far, unexpected role in replication fork progression. This phosphatase activity is essential for breast cancer progression and metastasis. Taken together, our data indicate that EYA4 is a novel breast cancer oncogene that supports primary tumor growth and metastasis. Developing therapeutics aimed at the serine/threonine phosphatase activity of EYA4 represents a robust strategy for killing breast cancer cells, to limit metastasis and overcome chemotherapy resistance caused by endoreplication and genomic rearrangements.

12.
Prostate ; 83(7): 628-640, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36811381

RESUMO

BACKGROUND: Activation and regulation of androgen receptor (AR) signaling and the DNA damage response impact the prostate cancer (PCa) treatment modalities of androgen deprivation therapy (ADT) and radiotherapy. Here, we have evaluated a role for human single-strand binding protein 1 (hSSB1/NABP2) in modulation of the cellular response to androgens and ionizing radiation (IR). hSSB1 has defined roles in transcription and maintenance of genome stability, yet little is known about this protein in PCa. METHODS: We correlated hSSB1 with measures of genomic instability across available PCa cases from The Cancer Genome Atlas (TCGA). Microarray and subsequent pathway and transcription factor enrichment analysis were performed on LNCaP and DU145 prostate cancer cells. RESULTS: Our data demonstrate that hSSB1 expression in PCa correlates with measures of genomic instability including multigene signatures and genomic scars that are reflective of defects in the repair of DNA double-strand breaks via homologous recombination. In response to IR-induced DNA damage, we demonstrate that hSSB1 regulates cellular pathways that control cell cycle progression and the associated checkpoints. In keeping with a role for hSSB1 in transcription, our analysis revealed that hSSB1 negatively modulates p53 and RNA polymerase II transcription in PCa. Of relevance to PCa pathology, our findings highlight a transcriptional role for hSSB1 in regulating the androgen response. We identified that AR function is predicted to be impacted by hSSB1 depletion, whereby this protein is required to modulate AR gene activity in PCa. CONCLUSIONS: Our findings point to a key role for hSSB1 in mediating the cellular response to androgen and DNA damage via modulation of transcription. Exploiting hSSB1 in PCa might yield benefits as a strategy to ensure a durable response to ADT and/or radiotherapy and improved patient outcomes.


Assuntos
Proteínas de Ligação a DNA , Proteínas Mitocondriais , Neoplasias da Próstata , Humanos , Masculino , Antagonistas de Androgênios/farmacologia , Androgênios/metabolismo , Linhagem Celular Tumoral , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Instabilidade Genômica , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Receptores Androgênicos/genética , Proteínas Mitocondriais/metabolismo
13.
Life Sci ; 315: 121361, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36608871

RESUMO

TP53 is the most frequently mutated gene in human cancer. It encodes the tumor suppressor protein p53, which suppresses tumorigenesis by acting as a critical transcription factor that can induce the expression of many genes controlling a plethora of fundamental cellular processes, including cell cycle progression, survival, apoptosis, and DNA repair. Missense mutations are the most frequent type of mutations in the TP53 gene. While these can have variable effects, they typically impair p53 function in a dominant-negative manner, thereby altering intra-cellular signaling pathways and promoting cancer development. Additionally, it is becoming increasingly apparent that p53 mutations also have non-cell autonomous effects that influence the tumor microenvironment (TME). The TME is a complex and heterogeneous milieu composed of both malignant and non-malignant cells, including cancer-associated fibroblasts (CAFs), adipocytes, pericytes, different immune cell types, such as tumor-associated macrophages (TAMs) and T and B lymphocytes, as well as lymphatic and blood vessels and extracellular matrix (ECM). Recently, a large body of evidence has demonstrated that various types of p53 mutations directly affect TME. They fine-tune the inflammatory TME and cell fate reprogramming, which affect cancer progression. Notably, re-educating the p53 signaling pathway in the TME may be an effective therapeutic strategy in combating cancer. Therefore, it is timely to here review the recent advances in our understanding of how TP53 mutations impact the fate of cancer cells by reshaping the TME.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Genes p53 , Neoplasias/genética , Neoplasias/patologia , Carcinogênese/genética , Transformação Celular Neoplásica/metabolismo , Microambiente Tumoral/genética
14.
Exp Hematol Oncol ; 12(1): 4, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36624493

RESUMO

BACKGROUND: αB-Crystallin is a heat shock chaperone protein which binds to misfolded proteins to prevent their aggregation. It is overexpressed in a wide-variety of cancers. Previous studies using human cancer cell lines and human xenograft models have suggested potential tumor promoter (oncogene) roles for αB-Crystallin in a wide-spectrum of cancers. METHODS: To determine the causal relationship between CRYAB overexpression and cancer, we generated a Cryab overexpression knock-in mouse model and monitor them for development of spontaneous and carcinogen (DMBA)-induced tumorigenesis. In order to investigate the mechanism of malignancies observed in this model multiple techniques were used such as immunohistochemical characterizations of tumors, bioinformatics analysis of publically available human tumor datasets, and generation of mouse embryonic fibroblasts (MEFs) for in vitro assays (clonogenic survival and migration assays and proteome analysis by mass-spectrometry). RESULTS: This model revealed that constitutive overexpression of Cryab results in the formation of a variety of lethal spontaneous primary and metastatic tumors in mice. In vivo, the overexpression of Cryab correlated with the upregulation of epithelial-to-mesenchymal (EMT) markers, angiogenesis and some oncogenic proteins including Basigin. In vitro, using E1A/Ras transformed MEFs, we observed that the overexpression of Cryab led to the promotion of cell survival via upregulation of Akt signaling and downregulation of pro-apoptotic pathway mediator JNK, with subsequent attenuation of apoptosis as assessed by cleaved caspase-3 and Annexin V staining. CONCLUSIONS: Overall, through the generation and characterization of Cryab overexpression model, we provide evidence supporting the role of αB-Crystallin as an oncogene, where its upregulation is sufficient to induce tumors, promote cell survival and inhibit apoptosis.

15.
Wiley Interdiscip Rev RNA ; 14(3): e1754, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35959932

RESUMO

Oral cancer (OC) is the most prevalent subtype of cancer arising in the head and neck region. OC risk is mainly attributed to behavioral risk factors such as exposure to tobacco and excessive alcohol consumption, and a lesser extent to viral infections such as human papillomaviruses and Epstein-Barr viruses. In addition to these acquired risk factors, heritable genetic factors have shown to be associated with OC risk. Despite the high incidence, biomarkers for OC diagnosis are lacking and consequently, patients are often diagnosed in advanced stages. This delay in diagnosis is reflected by poor overall outcomes of OC patients, where 5-year overall survival is around 50%. Among the biomarkers proposed for cancer detection, noncoding RNA (ncRNA) can be considered as one of the most promising categories of biomarkers due to their role in virtually all cellular processes. Similar to other cancer types, changes in expressions of ncRNAs have been reported in OC and a number of ncRNAs have diagnostic, prognostic, and therapeutic potential. Moreover, some ncRNAs are capable of regulating gene expression by various mechanisms. Therefore, elucidating the current literature on the four main types of ncRNAs namely, microRNA, lncRNA, snoRNA, piwi-RNA, and circular RNA in the context of OC pathogenesis is timely and would enable further improvements and innovations in diagnosis, prognosis, and treatment of OC. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.


Assuntos
MicroRNAs , Neoplasias Bucais , RNA Longo não Codificante , Humanos , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , MicroRNAs/genética , RNA Longo não Codificante/genética , Neoplasias Bucais/genética , Biomarcadores Tumorais/genética
16.
Front Genet ; 13: 848646, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432477

RESUMO

Patients with inflammatory bowel disease (IBD), including ulcerative colitis and Crohn's disease, are at higher risk to develop colorectal cancer (CRC). However, the underlying mechanisms of this predisposition remain elusive. We performed in-depth comparative computational analyses to gain new insights, including weighted gene co-expression network analysis (WGCNA) and gene ontology and pathway enrichment analyses, using gene expression datasets from IBD and CRC patients. When individually comparing IBD and CRC to normal control samples, we identified clusters of highly correlated genes, differentially expressed genes, and module-trait associations specific for each disease. When comparing IBD to CRC, we identified common hub genes and commonly enriched pathways. Most notably, IBD and CRC share significantly increased expression of five genes (MMP10, LCN2, REG1A, REG3A, and DUOX2), enriched inflammatory and neutrophil activation pathways and, most notably, highly significant enrichment of IL-4 and IL-13 signaling. Thus, our work expands our knowledge about the intricate relationship between IBD and CRC development and provides new rationales for developing novel therapeutic strategies.

18.
Cancers (Basel) ; 13(18)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34572879

RESUMO

Tyrosine kinase inhibitors (TKIs) are the first-line therapy for non-small-cell lung cancers (NSCLC) that harbour sensitising mutations within the epidermal growth factor receptor (EGFR). However, resistance remains a key issue, with tumour relapse likely to occur. We have previously identified that cell division cycle-associated protein 3 (CDCA3) is elevated in adenocarcinoma (LUAD) and correlates with sensitivity to platinum-based chemotherapy. Herein, we explored whether CDCA3 levels were associated with EGFR mutant LUAD and TKI response. We demonstrate that in a small-cohort tissue microarray and in vitro LUAD cell line panel, CDCA3 protein levels are elevated in EGFR mutant NSCLC as a result of increased protein stability downstream of receptor tyrosine kinase signalling. Here, CDCA3 protein levels correlated with TKI potency, whereby CDCA3high EGFR mutant NSCLC cells were most sensitive. Consistently, ectopic overexpression or inhibition of casein kinase 2 using CX-4945, which pharmacologically prevents CDCA3 degradation, upregulated CDCA3 levels and the response of T790M(+) H1975 cells and two models of acquired resistance to TKIs. Accordingly, it is possible that strategies to upregulate CDCA3 levels, particularly in CDCA3low tumours or upon the emergence of therapy resistance, might improve the response to EGFR TKIs and benefit patients.

19.
Cancers (Basel) ; 13(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34359683

RESUMO

The overexpression of BRF2, a selective subunit of RNA polymerase III, has been shown to be crucial in the development of several types of cancers, including breast cancer and lung squamous cell carcinoma. Predominantly, BRF2 acts as a central redox-sensing transcription factor (TF) and is involved in rescuing oxidative stress (OS)-induced apoptosis. Here, we showed a novel link between BRF2 and the DNA damage response. Due to the lack of BRF2-specific inhibitors, through virtual screening and molecular dynamics simulation, we identified potential drug candidates that interfere with BRF2-TATA-binding Protein (TBP)-DNA complex interactions based on binding energy, intermolecular, and torsional energy parameters. We experimentally tested bexarotene as a potential BRF2 inhibitor. We found that bexarotene (Bex) treatment resulted in a dramatic decline in oxidative stress and Tert-butylhydroquinone (tBHQ)-induced levels of BRF2 and consequently led to a decrease in the cellular proliferation of cancer cells which may in part be due to the drug pretreatment-induced reduction of ROS generated by the oxidizing agent. Our data thus provide the first experimental evidence that BRF2 is a novel player in the DNA damage response pathway and that bexarotene can be used as a potential inhibitor to treat cancers with the specific elevation of oxidative stress.

20.
NAR Cancer ; 3(2): zcab022, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34316709

RESUMO

Chemotherapy is used as a standard-of-care against cancers that display high levels of inherent genome instability. Chemotherapy induces DNA damage and intensifies pressure on the DNA repair pathways that can lead to deregulation. There is an urgent clinical need to be able to track the emergence of DNA repair driven chemotherapy resistance and tailor patient staging appropriately. There have been numerous studies into chemoresistance but to date no study has elucidated in detail the roles of the key DNA repair components in resistance associated with the frontline clinical combination of anthracyclines and taxanes together. In this study, we hypothesized that the emergence of chemotherapy resistance in triple negative breast cancer was driven by changes in functional signaling in the DNA repair pathways. We identified that consistent pressure on the non-homologous end joining pathway in the presence of genome instability causes failure of the key kinase DNA-PK, loss of p53 and compensation by p73. In-turn a switch to reliance on the homologous recombination pathway and RAD51 recombinase occurred to repair residual double strand DNA breaks. Further we demonstrate that RAD51 is an actionable target for resensitization to chemotherapy in resistant cells with a matched gene expression profile of resistance highlighted by homologous recombination in clinical samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA