Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(10): e2310464121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38412122

RESUMO

The ALOG (Arabidopsis LIGHT-DEPENDENT SHORT HYPOCOTYLS 1 (LSH1) and Oryza G1) proteins are conserved plant-specific Transcription Factors (TFs). They play critical roles in the development of various plant organs (meristems, inflorescences, floral organs, and nodules) from bryophytes to higher flowering plants. Despite the fact that the first members of this family were originally discovered in Arabidopsis, their role in this model plant has remained poorly characterized. Moreover, how these transcriptional regulators work at the molecular level is unknown. Here, we study the redundant function of the ALOG proteins LSH1,3,4 from Arabidopsis. We uncover their role in the repression of bract development and position them within a gene regulatory network controlling this process and involving the floral regulators LEAFY, BLADE-ON-PETIOLE, and PUCHI. Next, using in vitro genome-wide studies, we identified the conserved DNA motif bound by ALOG proteins from evolutionarily distant species (the liverwort Marchantia polymorpha and the flowering plants Arabidopsis, tomato, and rice). Resolution of the crystallographic structure of the ALOG DNA-binding domain in complex with DNA revealed the domain is a four-helix bundle with a disordered NLS and a zinc ribbon insertion between helices 2 and 3. The majority of DNA interactions are mediated by specific contacts made by the third alpha helix and the NLS. Taken together, this work provides the biochemical and structural basis for DNA-binding specificity of an evolutionarily conserved TF family and reveals its role as a key player in Arabidopsis flower development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Embriófitas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Arabidopsis/metabolismo , Proteínas de Plantas/metabolismo , Plantas/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Embriófitas/genética , Inflorescência/metabolismo , DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Flores , Proteínas Nucleares/metabolismo
2.
Trends Plant Sci ; 29(1): 40-51, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37482504

RESUMO

Transcription factors (TFs) bind DNA at specific sequences to regulate gene expression. This universal process is achieved via their DNA-binding domain (DBD). In mammals, the vast diversity of DBD structural conformations and the way in which they contact DNA has been used to organize TFs in the TFClass hierarchical classification. However, the numerous DBD types present in plants but absent from mammalian genomes were missing from this classification. We reviewed DBD 3D structures and models available for plant TFs to classify most of the 56 recognized plant TF types within the TFClass framework. This extended classification adds eight new classes and 37 new families corresponding to DBD structures absent in mammals. Plant-TFClass provides a unique resource for TF comparison across families and organisms.


Assuntos
Proteínas de Ligação a DNA , Fatores de Transcrição , Humanos , Animais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/genética , Mamíferos/genética , Mamíferos/metabolismo , DNA , Sítios de Ligação
3.
New Phytol ; 235(2): 402-419, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35434800

RESUMO

In plants, most developmental programs depend on the action of auxin. The best described model of the auxin signaling pathway, which explains most, but not all, of the auxin transcriptional responses, relies on a de-repression mechanism. The auxin/indole-3-acetic acid repressors (Aux/IAAs) interact with the auxin response factors (ARFs), the transcription factors of the auxin signaling pathway, leading to repression of the ARF-controlled genes. Auxin induces Aux/IAA degradation, releases ARFs and activates transcription. However, this elegant model is not suitable for all ARFs. Indeed, in Arabidopsis, which has 22 ARFs, only five of them fit into the model since they are the ones able to interact with Aux/IAAs. The remaining 17 have a limited capacity to interact with the repressors, and their mechanisms of action are still unclear. The differential interactions between ARF and Aux/IAA proteins constitute one of many examples of the biochemical and structural diversification of ARFs that affect their action and therefore affect auxin transcriptional responses. A deeper understanding of the structural properties of ARFs is fundamental to obtaining a better explanation of the action of auxin in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Nanoscale ; 13(19): 8901-8908, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33949561

RESUMO

Well-organized protein assemblies offer many properties that justify their use for the design of innovative bionanomaterials. Herein, crystals of the oligomerization domain of the LEAFY protein from Ginkgo biloba, organized in a honeycomb architecture, were used as a modular platform for the selective grafting of a ruthenium-based complex. The resulting bio-hybrid crystalline material was fully characterized by UV-visible and Raman spectroscopy and by mass spectrometry and LC-MS analysis after selective enzymatic digestion. Interestingly, insertion of complexes within the tubular structure affords an impressive increase in stability of the crystals, eluding the use of stabilizing cross-linking strategies.


Assuntos
Ginkgo biloba , Folhas de Planta , Cromatografia Líquida , Espectrometria de Massas , Proteínas
5.
Plant Physiol ; 185(3): 815-835, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33793914

RESUMO

The metabolic pathways of glycerolipids are well described in cells containing chloroplasts limited by a two-membrane envelope but not in cells containing plastids limited by four membranes, including heterokonts. Fatty acids (FAs) produced in the plastid, palmitic and palmitoleic acids (16:0 and 16:1), are used in the cytosol for the synthesis of glycerolipids via various routes, requiring multiple acyl-Coenzyme A (CoA) synthetases (ACS). Here, we characterized an ACS of the Bubblegum subfamily in the photosynthetic eukaryote Microchloropsis gaditana, an oleaginous heterokont used for the production of lipids for multiple applications. Genome engineering with TALE-N allowed the generation of MgACSBG point mutations, but no knockout was obtained. Point mutations triggered an overall decrease of 16:1 in lipids, a specific increase of unsaturated 18-carbon acyls in phosphatidylcholine and decrease of 20-carbon acyls in the betaine lipid diacylglyceryl-trimethyl-homoserine. The profile of acyl-CoAs highlighted a decrease in 16:1-CoA and 18:3-CoA. Structural modeling supported that mutations affect accessibility of FA to the MgACSBG reaction site. Expression in yeast defective in acyl-CoA biosynthesis further confirmed that point mutations affect ACSBG activity. Altogether, this study supports a critical role of heterokont MgACSBG in the production of 16:1-CoA and 18:3-CoA. In M. gaditana mutants, the excess saturated and monounsaturated FAs were diverted to triacylglycerol, thus suggesting strategies to improve the oil content in this microalga.


Assuntos
Coenzima A Ligases/metabolismo , Cianobactérias/genética , Cianobactérias/fisiologia , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Redes e Vias Metabólicas , Fotossíntese/fisiologia , Coenzima A Ligases/genética
6.
Mol Plant ; 14(5): 829-837, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33684542

RESUMO

Pioneer transcription factors (TFs) are a special category of TFs with the capacity to bind to closed chromatin regions in which DNA is wrapped around histones and may be highly methylated. Subsequently, pioneer TFs are able to modify the chromatin state to initiate gene expression. In plants, LEAFY (LFY) is a master floral regulator and has been suggested to act as a pioneer TF in Arabidopsis. Here, we demonstrate that LFY is able to bind both methylated and non-methylated DNA using a combination of in vitro genome-wide binding experiments and structural modeling. Comparisons between regions bound by LFY in vivo and chromatin accessibility data suggest that a subset of LFY bound regions is occupied by nucleosomes. We confirm that LFY is able to bind nucleosomal DNA in vitro using reconstituted nucleosomes. Finally, we show that constitutive LFY expression in seedling tissues is sufficient to induce chromatin accessibility in the LFY direct target genes APETALA1 and AGAMOUS. Taken together, our study suggests that LFY possesses key pioneer TF features that contribute to launching the floral gene expression program.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Flores/citologia , Plântula/genética , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cromatina/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas , Histonas/metabolismo , Nucleossomos/metabolismo , Plantas Geneticamente Modificadas , Fatores de Transcrição/genética
7.
Nucleic Acids Res ; 47(21): 11403-11417, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31598697

RESUMO

Exposure to harmful conditions such as radiation and desiccation induce oxidative stress and DNA damage. In radiation-resistant Deinococcus bacteria, the radiation/desiccation response is controlled by two proteins: the XRE family transcriptional repressor DdrO and the COG2856 metalloprotease IrrE. The latter cleaves and inactivates DdrO. Here, we report the biochemical characterization and crystal structure of DdrO, which is the first structure of a XRE protein targeted by a COG2856 protein. DdrO is composed of two domains that fold independently and are separated by a flexible linker. The N-terminal domain corresponds to the DNA-binding domain. The C-terminal domain, containing three alpha helices arranged in a novel fold, is required for DdrO dimerization. Cleavage by IrrE occurs in the loop between the last two helices of DdrO and abolishes dimerization and DNA binding. The cleavage site is hidden in the DdrO dimer structure, indicating that IrrE cleaves DdrO monomers or that the interaction with IrrE induces a structural change rendering accessible the cleavage site. Predicted COG2856/XRE regulatory protein pairs are found in many bacteria, and available data suggest two different molecular mechanisms for stress-induced gene expression: COG2856 protein-mediated cleavage or inhibition of oligomerization without cleavage of the XRE repressor.


Assuntos
Deinococcus , Proteínas Repressoras/química , Estresse Fisiológico/genética , Estresse Fisiológico/efeitos da radiação , Fatores de Transcrição/química , Sequência de Aminoácidos , Cristalografia por Raios X , Dano ao DNA , Deinococcus/enzimologia , Deinococcus/genética , Deinococcus/metabolismo , Deinococcus/efeitos da radiação , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Metaloproteases/química , Metaloproteases/genética , Metaloproteases/metabolismo , Modelos Moleculares , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Repressoras/genética , Fatores de Transcrição/genética
8.
PLoS Genet ; 15(9): e1008400, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31553720

RESUMO

Auxin is a major developmental regulator in plants and the acquisition of a transcriptional response to auxin likely contributed to developmental innovations at the time of water-to-land transition. Auxin Response Factors (ARFs) Transcription Factors (TFs) that mediate auxin-dependent transcriptional changes are divided into A, B and C evolutive classes in land plants. The origin and nature of the first ARF proteins in algae is still debated. Here, we identify the most 'ancient' ARF homologue to date in the early divergent charophyte algae Chlorokybus atmophyticus, CaARF. Structural modelling combined with biochemical studies showed that CaARF already shares many features with modern ARFs: it is capable of oligomerization, interacts with the TOPLESS co-repressor and specifically binds Auxin Response Elements as dimer. In addition, CaARF possesses a DNA-binding specificity that differs from class A and B ARFs and that was maintained in class C ARF along plants evolution. Phylogenetic evidence together with CaARF biochemical properties indicate that the different classes of ARFs likely arose from an ancestral proto-ARF protein with class C-like features. The foundation of auxin signalling would have thus happened from a pre-existing hormone-independent transcriptional regulation together with the emergence of a functional hormone perception complex.


Assuntos
Carofíceas/genética , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Receptores de Superfície Celular/genética , Proteínas de Ligação a DNA/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas/genética , Família Multigênica/genética , Filogenia , Reguladores de Crescimento de Plantas/genética , Elementos de Resposta/genética , Fatores de Transcrição/genética
9.
Mol Biol Evol ; 36(5): 908-918, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30668817

RESUMO

DELLA proteins are plant-specific transcriptional regulators known to interact through their C-terminal GRAS domain with over 150 transcription factors in Arabidopsis thaliana. Besides, DELLAs from vascular plants can interact through the N-terminal domain with the gibberellin receptor encoded by GID1, through which gibberellins promote DELLA degradation. However, this regulation is absent in nonvascular land plants, which lack active gibberellins or a proper GID1 receptor. Current knowledge indicates that DELLAs are important pieces of the signaling machinery of vascular plants, especially angiosperms, but nothing is known about DELLA function during early land plant evolution or if they exist at all in charophytan algae. We have now elucidated the evolutionary origin of DELLA proteins, showing that algal GRAS proteins are monophyletic and evolved independently from those of land plants, which explains why there are no DELLAs outside land plants. DELLA genes have been maintained throughout land plant evolution with only two major duplication events kept among plants. Furthermore, we show that the features needed for DELLA interaction with the receptor were already present in the ancestor of all land plants and propose that these DELLA N-terminal motifs have been tightly conserved in nonvascular land plants for their function in transcriptional coactivation, which allowed subsequent exaptation for the interaction with the GID1 receptor when vascular plants developed gibberellin synthesis and the corresponding perception module.


Assuntos
Proteínas de Algas/genética , Proteínas de Arabidopsis/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Plantas/genética , Sequência de Aminoácidos , Proteínas de Arabidopsis/metabolismo , Giberelinas/metabolismo , Plantas/metabolismo , Domínios Proteicos , Receptores de Superfície Celular/metabolismo , Ativação Transcricional
10.
Mol Plant ; 12(6): 822-832, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-30336329

RESUMO

Auxin is a key hormone performing a wealth of functions throughout the life cycle of plants. It acts largely by regulating genes at the transcriptional level through a family of transcription factors called auxin response factors (ARFs). Even though all ARF monomers analyzed so far bind a similar DNA sequence, there is evidence that ARFs differ in their target genomic regions and regulated genes. Here, we report the use of position weight matrices (PWMs) to model ARF DNA binding specificity based on published DNA affinity purification sequencing (DAP-seq) data. We found that the genome binding of two ARFs (ARF2 and ARF5/Monopteros [MP]) differ largely because these two factors have different preferred ARF binding site (ARFbs) arrangements (orientation and spacing). We illustrated why PWMs are more versatile to reliably identify ARFbs than the widely used consensus sequences and demonstrated their power with biochemical experiments in the identification of the regulatory regions of IAA19, an well-characterized auxin-responsive gene. Finally, we combined gene regulation by auxin with ARF-bound regions and identified specific ARFbs configurations that are over-represented in auxin-upregulated genes, thus deciphering the ARFbs syntax functional for regulation. Our study provides a general method to exploit the potential of genome-wide DNA binding assays and to decode gene regulation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Ácidos Indolacéticos/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/metabolismo
11.
Trends Plant Sci ; 22(8): 718-725, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28668510

RESUMO

Proteins often act in complexes assembled via protein-protein interaction domains. The sterile alpha motif (SAM) domain is one of the most prominent interaction domains in animals and is present in proteins of diverse functions. This domain allows head-to-tail closed oligomerisation or polymer formation resulting in homo- and/or heterocomplexes that have been shown to be important for proper protein localisation and function. In plants this domain is also present but has been poorly studied except for recent studies on the LEAFY floral regulator and the tRNA import component (TRIC)1/2 proteins. Here we catalogue SAM domain-containing proteins from arabidopsis (Arabidopsis thaliana), compare plant and other eukaryotic SAM domains, and perform homology modelling to probe plant SAM domain interaction capabilities.


Assuntos
Arabidopsis/genética , Modelos Moleculares , Motivo Estéril alfa , Sequência de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Modelos Estruturais , Domínios e Motivos de Interação entre Proteínas , Alinhamento de Sequência
12.
Proc Natl Acad Sci U S A ; 114(30): 8107-8112, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28698367

RESUMO

Transcriptional repression involves a class of proteins called corepressors that link transcription factors to chromatin remodeling complexes. In plants such as Arabidopsis thaliana, the most prominent corepressor is TOPLESS (TPL), which plays a key role in hormone signaling and development. Here we present the crystallographic structure of the Arabidopsis TPL N-terminal region comprising the LisH and CTLH (C-terminal to LisH) domains and a newly identified third region, which corresponds to a CRA domain. Comparing the structure of TPL with the mammalian TBL1, which shares a similar domain structure and performs a parallel corepressor function, revealed that the plant TPLs have evolved a new tetramerization interface and unique and highly conserved surface for interaction with repressors. Using site-directed mutagenesis, we validated those surfaces in vitro and in vivo and showed that TPL tetramerization and repressor binding are interdependent. Our results illustrate how evolution used a common set of protein domains to create a diversity of corepressors, achieving similar properties with different molecular solutions.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas Correpressoras/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Motivos de Aminoácidos , Sequência de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas Correpressoras/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Multimerização Proteica
13.
New Phytol ; 216(2): 469-481, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28233912

RESUMO

Flowering plants evolved from an unidentified gymnosperm ancestor. Comparison of the mechanisms controlling development in angiosperm flowers and gymnosperm cones may help to elucidate the mysterious origin of the flower. We combined gene expression studies with protein behaviour characterization in Welwitschia mirabilis to test whether the known regulatory links between LEAFY and its MADS-box gene targets, central to flower development, might also contribute to gymnosperm reproductive development. We found that WelLFY, one of two LEAFY-like genes in Welwitschia, could be an upstream regulator of the MADS-box genes APETALA3/PISTILLATA-like (B-genes). We demonstrated that, even though their DNA-binding domains are extremely similar, WelLFY and its paralogue WelNDLY exhibit distinct DNA-binding specificities, and that, unlike WelNDLY, WelLFY shares with its angiosperm orthologue the capacity to bind promoters of Welwitschia B-genes. Finally, we identified several cis-elements mediating these interactions in Welwitschia and obtained evidence that the link between LFY homologues and B-genes is also conserved in two other gymnosperms, Pinus and Picea. Although functional approaches to investigate cone development in gymnosperms are limited, our state-of-the-art biophysical techniques, coupled with expression studies, provide evidence that crucial links, central to the control of floral development, may already have existed before the appearance of flowers.


Assuntos
Flores/crescimento & desenvolvimento , Genes de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estreptófitas/anatomia & histologia , Estreptófitas/crescimento & desenvolvimento , Arabidopsis/genética , Sequência de Bases , Sítios de Ligação/genética , Regulação da Expressão Gênica de Plantas , Cinética , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Homologia de Sequência de Aminoácidos , Estreptófitas/genética
14.
Plant J ; 87(6): 641-53, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27232113

RESUMO

Growing pharmaceutical interest in benzylisoquinoline alkaloids (BIA) coupled with their chemical complexity make metabolic engineering of microbes to create alternative platforms of production an increasingly attractive proposition. However, precise knowledge of rate-limiting enzymes and negative feedback inhibition by end-products of BIA metabolism is of paramount importance for this emerging field of synthetic biology. In this work we report the structural characterization of (S)-norcoclaurine-6-O-methyltransferase (6OMT), a key rate-limiting step enzyme involved in the synthesis of reticuline, the final intermediate to be shared between the different end-products of BIA metabolism, such as morphine, papaverine, berberine and sanguinarine. Four different crystal structures of the enzyme from Thalictrum flavum (Tf 6OMT) were solved: the apoenzyme, the complex with S-adenosyl-l-homocysteine (SAH), the complexe with SAH and the substrate and the complex with SAH and a feedback inhibitor, sanguinarine. The Tf 6OMT structural study provides a molecular understanding of its substrate specificity, active site structure and reaction mechanism. This study also clarifies the inhibition of Tf 6OMT by previously suggested feedback inhibitors. It reveals its high and time-dependent sensitivity toward sanguinarine.


Assuntos
Metiltransferases/química , Metiltransferases/metabolismo , Thalictrum/enzimologia , Benzofenantridinas/metabolismo , Benzofenantridinas/farmacologia , Benzilisoquinolinas/metabolismo , Berberina/farmacologia , Sítios de Ligação , Cristalografia por Raios X , Inibidores Enzimáticos/farmacologia , Escherichia coli/genética , Isoquinolinas/metabolismo , Isoquinolinas/farmacologia , Metiltransferases/antagonistas & inibidores , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Conformação Proteica , Multimerização Proteica , Thalictrum/metabolismo
15.
Nat Commun ; 7: 11222, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27097556

RESUMO

Deciphering the mechanisms directing transcription factors (TFs) to specific genome regions is essential to understand and predict transcriptional regulation. TFs recognize short DNA motifs primarily through their DNA-binding domain. Some TFs also possess an oligomerization domain suspected to potentiate DNA binding but for which the genome-wide influence remains poorly understood. Here we focus on the LEAFY transcription factor, a master regulator of flower development in angiosperms. We have determined the crystal structure of its conserved amino-terminal domain, revealing an unanticipated Sterile Alpha Motif oligomerization domain. We show that this domain is essential to LEAFY floral function. Moreover, combined biochemical and genome-wide assays suggest that oligomerization is required for LEAFY to access regions with low-affinity binding sites or closed chromatin. This finding shows that domains that do not directly contact DNA can nevertheless have a profound impact on the DNA binding landscape of a TF.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Oryza/genética , Fatores de Transcrição/química , Sequência de Aminoácidos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação , Cromatina/química , Cromatina/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Flores/crescimento & desenvolvimento , Flores/metabolismo , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Modelos Moleculares , Dados de Sequência Molecular , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Ligação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
16.
Trends Plant Sci ; 21(7): 574-583, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26994657

RESUMO

Auxin response factors (ARFs), transcription factors (TFs), and their Aux/IAA (IAA) repressors are central components of the auxin signalling pathway. They interact as homo- and heteromultimers. The structure of their interacting domains revealed a PB1 fold mediating electrostatic interactions through positive and negative faces. Detailed structural analysis revealed additional hydrophobic and polar determinants and started unveiling an ARF/IAA interaction code. Structural progress also shed new light on the DNA binding mode of ARFs showing how they dimerize to bind repeated DNA elements. Here, we discuss the in vitro and in vivo significance of these structural properties for the ARF family of TFs and identify some critical missing information on how specificity might be achieved in the auxin signalling pathway.


Assuntos
Ácidos Indolacéticos/metabolismo , Transcrição Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
Development ; 143(7): 1108-19, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26903506

RESUMO

Higher plants continuously and iteratively produce new above-ground organs in the form of leaves, stems and flowers. These organs arise from shoot apical meristems whose homeostasis depends on coordination between self-renewal of stem cells and their differentiation into organ founder cells. This coordination is stringently controlled by the central transcription factor WUSCHEL (WUS), which is both necessary and sufficient for stem cell specification in Arabidopsis thaliana ULTRAPETALA1 (ULT1) was previously identified as a plant-specific, negative regulator of WUS expression. However, molecular mechanisms underlying this regulation remain unknown. ULT1 protein contains a SAND putative DNA-binding domain and a B-box, previously proposed as a protein interaction domain in eukaryotes. Here, we characterise a novel partner of ULT1, named ULT1 INTERACTING FACTOR 1 (UIF1), which contains a Myb domain and an EAR motif. UIF1 and ULT1 function in the same pathway for regulation of organ number in the flower. Moreover, UIF1 displays DNA-binding activity and specifically binds to WUS regulatory elements. We thus provide genetic and molecular evidence that UIF1 and ULT1 work together in floral meristem homeostasis, probably by direct repression of WUS expression.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Homeodomínio/metabolismo , Meristema/crescimento & desenvolvimento , Morfogênese/fisiologia , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Proteínas de Arabidopsis/genética , Ensaio de Desvio de Mobilidade Eletroforética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Folhas de Planta/crescimento & desenvolvimento , Caules de Planta/crescimento & desenvolvimento , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Alinhamento de Sequência , Células-Tronco/citologia , Fatores de Transcrição/genética , Transcrição Gênica/genética
18.
Science ; 347(6222): 621, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25657241

RESUMO

Brunkard et al. propose that the identification of novel LEAFY sequences contradicts our model of evolution through promiscuous intermediates. Based on the debate surrounding land plant phylogeny and on our analysis of these interesting novel sequences, we explain why there is no solid evidence to disprove our model.


Assuntos
DNA de Plantas/química , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Evolução Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética
19.
J Biol Chem ; 289(46): 31765-31776, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25274629

RESUMO

The function of selenium-binding protein 1 (SBP1), present in almost all organisms, has not yet been established. In mammals, SBP1 is known to bind the essential element selenium but the binding site has not been identified. In addition, the SBP family has numerous potential metal-binding sites that may play a role in detoxification pathways in plants. In Arabidopsis thaliana, AtSBP1 over-expression increases tolerance to two toxic compounds for plants, selenium and cadmium, often found as soil pollutants. For a better understanding of AtSBP1 function in detoxification mechanisms, we investigated the chelating properties of the protein toward different ligands with a focus on selenium using biochemical and biophysical techniques. Thermal shift assays together with inductively coupled plasma mass spectrometry revealed that AtSBP1 binds selenium after incubation with selenite (SeO3(2-)) with a ligand to protein molar ratio of 1:1. Isothermal titration calorimetry confirmed the 1:1 stoichiometry and revealed an unexpectedly large value of binding enthalpy suggesting a covalent bond between selenium and AtSBP1. Titration of reduced Cys residues and comparative mass spectrometry on AtSBP1 and the purified selenium-AtSBP1 complex identified Cys(21) and Cys(22) as being responsible for the binding of one selenium. These results were validated by site-directed mutagenesis. Selenium K-edge x-ray absorption near edge spectroscopy performed on the selenium-AtSBP1 complex demonstrated that AtSBP1 reduced SeO3(2-) to form a R-S-Se(II)-S-R-type complex. The capacity of AtSBP1 to bind different metals and selenium is discussed with respect to the potential function of AtSBP1 in detoxification mechanisms and selenium metabolism.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/efeitos dos fármacos , Proteínas de Transporte/química , Regulação da Expressão Gênica de Plantas , Proteínas de Ligação a Selênio/química , Selênio/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cisteína/química , Humanos , Ligantes , Conformação Molecular , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Proteínas Recombinantes/química , Homologia de Sequência de Aminoácidos , Termodinâmica
20.
Plant Cell ; 26(9): 3603-15, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25228343

RESUMO

In plants, MADS domain transcription factors act as central regulators of diverse developmental pathways. In Arabidopsis thaliana, one of the most central members of this family is SEPALLATA3 (SEP3), which is involved in many aspects of plant reproduction, including floral meristem and floral organ development. SEP3 has been shown to form homo and heterooligomeric complexes with other MADS domain transcription factors through its intervening (I) and keratin-like (K) domains. SEP3 function depends on its ability to form specific protein-protein complexes; however, the atomic level determinants of oligomerization are poorly understood. Here, we report the 2.5-Å crystal structure of a small portion of the intervening and the complete keratin-like domain of SEP3. The domains form two amphipathic alpha helices separated by a rigid kink, which prevents intramolecular association and presents separate dimerization and tetramerization interfaces comprising predominantly hydrophobic patches. Mutations to the tetramerization interface demonstrate the importance of highly conserved hydrophobic residues for tetramer stability. Atomic force microscopy was used to show SEP3-DNA interactions and the role of oligomerization in DNA binding and conformation. Based on these data, the oligomerization patterns of the larger family of MADS domain transcription factors can be predicted and manipulated based on the primary sequence.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/metabolismo , Proteínas de Domínio MADS/química , Proteínas de Domínio MADS/metabolismo , Multimerização Proteica , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Cromatografia em Gel , Cristalografia por Raios X , DNA de Plantas/metabolismo , Microscopia de Força Atômica , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/química , Regiões Promotoras Genéticas/genética , Ligação Proteica , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA