Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 14(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36497214

RESUMO

RNA polymerase (Pol) III transcribes short untranslated RNAs that contribute to the regulation of gene expression. Two isoforms of human Pol III have been described that differ by the presence of the POLR3G/RPC32α or POLR3GL/RPC32ß subunits. POLR3G was found to be expressed in embryonic stem cells and at least a subset of transformed cells, whereas POLR3GL shows a ubiquitous expression pattern. Here, we demonstrate that POLR3G is specifically overexpressed in clinical samples of triple-negative breast cancer (TNBC) but not in other molecular subtypes of breast cancer. POLR3G KO in the MDA-MB231 TNBC cell line dramatically reduces anchorage-independent growth and invasive capabilities in vitro. In addition, the POLR3G KO impairs tumor growth and metastasis formation of orthotopic xenografts in mice. Moreover, KO of POLR3G induces expression of the pioneer transcription factor FOXA1 and androgen receptor. In contrast, the POLR3G KO neither alters proliferation nor the expression of epithelial-mesenchymal transition marker genes. These data demonstrate that POLR3G expression is required for TNBC tumor growth, invasiveness and dissemination and that its deletion affects triple-negative breast cancer-specific gene expression.

2.
Nucleic Acids Res ; 47(19): 10313-10326, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31529052

RESUMO

In Eukaryotes, tRNAs, 5S RNA and U6 RNA are transcribed by RNA polymerase (Pol) III. Human Pol III is composed of 17 subunits. Three specific Pol III subunits form a stable ternary subcomplex (RPC62-RPC39-RPC32α/ß) being involved in pre-initiation complex formation. No paralogues for subunits of this subcomplex subunits have been found in Pols I or II, but hRPC62 was shown to be structurally related to the general Pol II transcription factor hTFIIEα. Here we show that these structural homologies extend to functional similarities. hRPC62 as well as hTFIIEα possess intrinsic ATP-dependent 3'-5' DNA unwinding activity. The ATPase activities of both proteins are stimulated by single-stranded DNA. Moreover, the eWH domain of hTFIIEα can replace the first eWH (eWH1) domain of hRPC62 in ATPase and DNA unwinding assays. Our results identify intrinsic enzymatic activities in hRPC62 and hTFIIEα.


Assuntos
RNA Polimerase III/química , Fatores de Transcrição TFII/genética , Transcrição Gênica , Trifosfato de Adenosina , DNA Helicases/química , DNA Helicases/genética , Humanos , Subunidades Proteicas/química , Subunidades Proteicas/genética , RNA Polimerase III/genética , Fatores de Transcrição TFII/química
3.
Nucleic Acids Res ; 47(8): 3937-3956, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30820548

RESUMO

RNA polymerase (pol) III occurs in two forms, containing either the POLR3G subunit or the related paralogue POLR3GL. Whereas POLR3GL is ubiquitous, POLR3G is enriched in undifferentiated cells. Depletion of POLR3G selectively triggers proliferative arrest and differentiation of prostate cancer cells, responses not elicited when POLR3GL is depleted. A small molecule pol III inhibitor can cause POLR3G depletion, induce similar differentiation and suppress proliferation and viability of cancer cells. This response involves control of the fate-determining factor NANOG by small RNAs derived from Alu short interspersed nuclear elements. Tumour initiating activity in vivo can be reduced by transient exposure to the pol III inhibitor. Untransformed prostate cells appear less sensitive than cancer cells to pol III depletion or inhibition, raising the possibility of a therapeutic window.


Assuntos
Antineoplásicos/farmacologia , Regulação Neoplásica da Expressão Gênica , Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , RNA Polimerase III/genética , Bibliotecas de Moléculas Pequenas/farmacologia , Idoso , Elementos Alu/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Prostatectomia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Polimerase III/antagonistas & inibidores , RNA Polimerase III/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Neurol Genet ; 4(6): e289, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30584594

RESUMO

OBJECTIVE: To identify the genetic cause of hypomyelinating leukodystrophy in 2 consanguineous families. METHODS: Homozygosity mapping combined with whole-exome sequencing of consanguineous families was performed. Mutation consequences were determined by studying the structural change of the protein and by the RNA analysis of patients' fibroblasts. RESULTS: We identified a biallelic mutation in a gene coding for a Pol III-specific subunit, POLR3K (c.121C>T/p.Arg41Trp), that cosegregates with the disease in 2 unrelated patients. Patients expressed neurologic and extraneurologic signs found in POLR3A- and POLR3B-related leukodystrophies with a peculiar severe digestive dysfunction. The mutation impaired the POLR3K-POLR3B interactions resulting in zebrafish in abnormal gut development. Functional studies in the 2 patients' fibroblasts revealed a severe decrease (60%-80%) in the expression of 5S and 7S ribosomal RNAs in comparison with control. CONCLUSIONS: These analyses underlined the key role of ribosomal RNA regulation in the development and maintenance of the white matter and the cerebellum as already reported for diseases related to genes involved in transfer RNA or translation initiation factors.

5.
Cell Cycle ; 17(5): 605-615, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29171785

RESUMO

RNA polymerase (Pol) III transcribes small untranslated RNAs that are essential for cellular homeostasis and growth. Its activity is regulated by inactivation of tumor suppressor proteins and overexpression of the oncogene c-MYC, but the concerted action of these tumor-promoting factors on Pol III transcription has not yet been assessed. In order to comprehensively analyse the regulation of Pol III transcription during tumorigenesis we employ a model system that relies on the expression of five genetic elements to achieve cellular transformation. Expression of these elements in six distinct transformation intermediate cell lines leads to the inactivation of TP53, RB1, and protein phosphatase 2A, as well as the activation of RAS and the protection of telomeres by TERT, thereby conducting to full tumoral transformation of IMR90 fibroblasts. Transformation is accompanied by moderately enhanced levels of a subset of Pol III-transcribed RNAs (7SK; MRP; H1). In addition, mRNA and/or protein levels of several Pol III subunits and transcription factors are upregulated, including increased protein levels of TFIIIB and TFIIIC subunits, of SNAPC1 and of Pol III subunits. Strikingly, the expression of POLR3G and of SNAPC1 is strongly enhanced during transformation in this cellular transformation model. Collectively, our data indicate that increased expression of several components of the Pol III transcription system accompanied by a 2-fold increase in steady state levels of a subset of Pol III RNAs is sufficient for sustaining tumor formation.


Assuntos
RNA Polimerase III/metabolismo , Transcrição Gênica , Animais , Transformação Celular Neoplásica , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Camundongos , Camundongos Nus , Camundongos SCID , Modelos Biológicos , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Polimerase III/genética , Proteínas de Ligação a Retinoblastoma/genética , Proteínas de Ligação a Retinoblastoma/metabolismo , Telomerase/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima
6.
J Struct Biol ; 192(3): 313-319, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26394183

RESUMO

Transcription initiation by eukaryotic RNA polymerase (Pol) III relies on the subcomplex RPC62/RPC39/RPC32. Two distinct isoforms of RPC32 are encoded in the human genome. RPC32α expression is highly regulated and found only in stem cells and transformed cells, whereas RPC32ß is ubiquitously expressed in tissues. Here we identify a core-interacting domain of RPC32 sufficient for the interaction with RPC62. We present the crystal structure of a complex of RPC62 and the RPC32ß core domain. RPC32ß associates with the extended winged helix 1 and 2 and the coiled coil domain of RPC62 qualifying RPC32 as a molecular bridge in between RPC62 domains. The RPC62-RPC32 complex fit into EM data suggests a bi-functional role for RPC32 through interactions with the largest Pol III subunit and through solvent exposed residues. RPC32 positioning into Pol III suggests that subunit-specific contacts at the surface of the Pol III holoenzyme are critical for its function.


Assuntos
Regulação da Expressão Gênica/genética , RNA Polimerase III/ultraestrutura , Iniciação da Transcrição Genética/fisiologia , Sequência de Aminoácidos , Cristalografia por Raios X , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos/ultraestrutura , Isoformas de Proteínas/genética , Isoformas de Proteínas/ultraestrutura , Estrutura Terciária de Proteína , Subunidades Proteicas , RNA Polimerase III/genética
7.
Nature ; 511(7510): 483-7, 2014 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-25043018

RESUMO

In mammalian cells, the MYC oncoprotein binds to thousands of promoters. During mitogenic stimulation of primary lymphocytes, MYC promotes an increase in the expression of virtually all genes. In contrast, MYC-driven tumour cells differ from normal cells in the expression of specific sets of up- and downregulated genes that have considerable prognostic value. To understand this discrepancy, we studied the consequences of inducible expression and depletion of MYC in human cells and murine tumour models. Changes in MYC levels activate and repress specific sets of direct target genes that are characteristic of MYC-transformed tumour cells. Three factors account for this specificity. First, the magnitude of response parallels the change in occupancy by MYC at each promoter. Functionally distinct classes of target genes differ in the E-box sequence bound by MYC, suggesting that different cellular responses to physiological and oncogenic MYC levels are controlled by promoter affinity. Second, MYC both positively and negatively affects transcription initiation independent of its effect on transcriptional elongation. Third, complex formation with MIZ1 (also known as ZBTB17) mediates repression of multiple target genes by MYC and the ratio of MYC and MIZ1 bound to each promoter correlates with the direction of response.


Assuntos
Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica/genética , Genes myc/genética , Neoplasias/genética , Transcriptoma , Regulação para Cima/genética , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Elementos E-Box/genética , Humanos , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas Inibidoras de STAT Ativados/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Polimerase II/metabolismo , Ubiquitina-Proteína Ligases
8.
Transcription ; 5(1): e27526, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25764111

RESUMO

Human RNA polymerase III transcribes small untranslated RNAs that contribute to the regulation of essential cellular processes, including transcription, RNA processing and translation. Analysis of this transcription system by in vitro transcription techniques has largely contributed to the discovery of its transcription factors and to the understanding of the regulation of human RNA polymerase III transcription. Here we review some of the key steps that led to the identification of transcription factors and to the definition of minimal promoter sequences for human RNA polymerase III transcription.


Assuntos
Regulação da Expressão Gênica , RNA Polimerase III/fisiologia , Transcrição Gênica , Humanos , Modelos Genéticos , Regiões Promotoras Genéticas , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , Pequeno RNA não Traduzido/biossíntese , Pequeno RNA não Traduzido/genética , Sequências Reguladoras de Ácido Nucleico
9.
Transcription ; 3(1): 2-7, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22456313

RESUMO

The winged helix (WH) domain is found in core components of transcription systems in eukaryotes and prokaryotes. It represents a sub-class of the helix-turn-helix motif. The WH domain participates in establishing protein-DNA and protein-protein-interactions. Here, we discuss possible explanations for the enrichment of this motif in transcription systems.


Assuntos
Proteínas de Ligação a DNA/química , RNA Polimerases Dirigidas por DNA/química , Fatores de Transcrição/química , DNA/química , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Sequências Hélice-Volta-Hélice , Humanos , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
10.
Nat Struct Mol Biol ; 18(3): 352-8, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21358628

RESUMO

The 17-subunit human RNA polymerase III (hPol III) transcribes small, untranslated RNA genes that are involved in the regulation of transcription, splicing and translation. hPol III subunits hRPC62, hRPC39 and hRPC32 form a stable ternary subcomplex required for promoter-specific transcription initiation by hPol III. Here, we report the crystal structure of hRPC62. This subunit folds as a four-tandem extended winged helix (eWH) protein that is structurally related to the transcription factor TFIIEα N terminus. Through biochemical analyses, we mapped the protein-protein interactions of hRPC62, hRPC32 and hRPC39. In addition, we demonstrated that hRPC62 and hRPC39 bind single-stranded and duplex DNA, respectively, in a sequence-independent manner. Overall, we shed light on structural similarities between the hPol III-specific subunit hRPC62 and TFIIEα and propose specific functions for hRPC39 and hRPC62 in transcription initiation by hPol III.


Assuntos
Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , RNA Polimerase III/química , RNA Polimerase III/metabolismo , Transcrição Gênica , Cristalografia por Raios X , DNA/metabolismo , Humanos , Modelos Moleculares , Mapeamento de Interação de Proteínas , Subunidades Proteicas/genética , RNA Polimerase III/genética , Fatores de Transcrição TFII/química
11.
Cell Cycle ; 9(18): 3687-99, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20890107

RESUMO

RNA polymerase III transcribes small untranslated RNAs that fulfill essential cellular functions in regulating transcription, RNA processing, translation and protein translocation. RNA polymerase III transcription activity is tightly regulated during the cell cycle and coupled to growth control mechanisms. Furthermore, there are reports of changes in RNA polymerase III transcription activity during cellular differentiation, including the discovery of a novel isoform of human RNA polymerase III that has been shown to be specifically expressed in undifferentiated human H1 embryonic stem cells. Here, we review major regulatory mechanisms of RNA polymerase III transcription during the cell cycle, cell growth and cell differentiation.


Assuntos
RNA Polimerase III/metabolismo , Diferenciação Celular , Processos de Crescimento Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Perfilação da Expressão Gênica , Humanos , Regiões Promotoras Genéticas , Isoformas de Proteínas/metabolismo , RNA/metabolismo , RNA Polimerase III/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
12.
Proc Natl Acad Sci U S A ; 107(9): 4176-81, 2010 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-20154270

RESUMO

Transcription in eukaryotic nuclei is carried out by DNA-dependent RNA polymerases I, II, and III. Human RNA polymerase III (Pol III) transcribes small untranslated RNAs that include tRNAs, 5S RNA, U6 RNA, and some microRNAs. Increased Pol III transcription has been reported to accompany or cause cell transformation. Here we describe a Pol III subunit (RPC32beta) that led to the demonstration of two human Pol III isoforms (Pol IIIalpha and Pol IIIbeta). RPC32beta-containing Pol IIIbeta is ubiquitously expressed and essential for growth of human cells. RPC32alpha-containing Pol IIIalpha is dispensable for cell survival, with expression being restricted to undifferentiated ES cells and to tumor cells. In this regard, and most importantly, suppression of RPC32alpha expression impedes anchorage-independent growth of HeLa cells, whereas ectopic expression of RPC32alpha in IMR90 fibroblasts enhances cell transformation and dramatically changes the expression of several tumor-related mRNAs and that of a subset of Pol III RNAs. These results identify a human Pol III isoform and isoform-specific functions in the regulation of cell growth and transformation.


Assuntos
Divisão Celular , Transformação Celular Neoplásica , Isoenzimas/metabolismo , RNA Polimerase III/metabolismo , Diferenciação Celular , Eletroforese em Gel de Poliacrilamida , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Células HeLa , Humanos , Dados de Sequência Molecular , RNA Interferente Pequeno
13.
J Biol Chem ; 282(23): 17179-89, 2007 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-17409385

RESUMO

TFIIIC in yeast and humans is required for transcription of tRNA and 5 S RNA genes by RNA polymerase III. In the yeast Saccharomyces cerevisiae, TFIIIC is composed of six subunits, five of which are conserved in humans. We report the identification, molecular cloning, and characterization of the sixth subunit of human TFIIIC, TFIIIC35, which is related to the smallest subunit of yeast TFIIIC. Human TFIIIC35 does not contain the phosphoglycerate mutase domain of its yeast counterpart, and these two proteins display only limited homology within a 34-amino acid domain. Homologs of the sixth TFIIIC subunit are also identified in other eukaryotes, and their phylogenic evolution is analyzed. Affinity-purified human TFIIIC from an epitope-tagged TFIIIC35 cell line is active in binding to and in transcription of the VA1 gene in vitro. Furthermore, TFIIIC35 specifically interacts with the human TFIIIC subunits TFIIIC63 and, to a lesser extent, TFIIIC90 in vitro. Finally, we determined a limited region in the smallest subunit of yeast TFIIIC that is sufficient for interacting with the yeast TFIIIC subunit ScTfc1 (orthologous to TFIIIC63) and found it to be adjacent to and overlap the 34-amino acid domain that is conserved from yeast to humans.


Assuntos
Fatores de Transcrição TFIII/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Primers do DNA , Imunofluorescência , Humanos , Dados de Sequência Molecular , Filogenia , RNA Polimerase III/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/classificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Fatores de Transcrição TFIII/química , Fatores de Transcrição TFIII/classificação , Fatores de Transcrição TFIII/genética
14.
Mol Cell Biol ; 26(13): 4920-33, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16782880

RESUMO

RSC is an essential, multisubunit chromatin remodeling complex. We show here that the Rsc4 subunit of RSC interacted via its C terminus with Rpb5, a conserved subunit shared by all three nuclear RNA polymerases (Pol). Furthermore, the RSC complex coimmunoprecipitated with all three RNA polymerases. Mutations in the C terminus of Rsc4 conferred a thermosensitive phenotype and the loss of interaction with Rpb5. Certain thermosensitive rpb5 mutations were lethal in combination with an rsc4 mutation, supporting the physiological significance of the interaction. Pol II transcription of ca. 12% of the yeast genome was increased or decreased twofold or more in a rsc4 C-terminal mutant. The transcription of the Pol III-transcribed genes SNR6 and RPR1 was also reduced, in agreement with the observed localization of RSC near many class III genes. Rsc4 C-terminal mutations did not alter the stability or assembly of the RSC complex, suggesting an impact on Rsc4 function. Strikingly, a C-terminal mutation of Rsc4 did not impair RSC recruitment to the RSC-responsive genes DUT1 and SMX3 but rather changed the chromatin accessibility of DNases to their promoter regions, suggesting that the altered transcription of DUT1 and SMX3 was the consequence of altered chromatin remodeling.


Assuntos
Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas Fúngicas/metabolismo , Leveduras/metabolismo , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina/genética , Imunoprecipitação da Cromatina , Proteínas Cromossômicas não Histona/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Mutação , Subunidades Proteicas/metabolismo , Transcrição Gênica , Leveduras/enzimologia , Leveduras/genética
15.
Nucleic Acids Res ; 31(24): 7070-82, 2003 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-14654682

RESUMO

The 5' leader region of avian sarcoma-leukosis viruses (ASLVs) folds into a series of RNA secondary structures which are involved in key steps in the viral replication cycle such as reverse transcription, dimerization and packaging of genomic RNA. The O3 stem and three stem-loops (O3SLa, O3SLb and O3SLc) form the minimal packaging signal that is located downstream of the primer binding site (PBS). The U5-PBS region contributes to packaging via a mechanism that remains unknown. In this in vitro study, we have investigated the possibility of interactions between the R-U5-PBS region and the minimal packaging signal using chemical and enzymatic probing, antisense oligonucleotides and site-directed mutagenesis. We have identified a base pairing interaction between the PBS sequence and the terminal loop of O3SLa. It was found that the PBS/O3SLa interaction was intramolecular since it occurred not only in dimeric RNA but also in monomeric RNA. This interaction probably corresponds to a pseudoknot interaction. The PBS/O3SLa interaction may be formed in vivo since the sequences are highly conserved in ASLV strains. The PBS/O3SLa interaction may regulate the processes of primer tRNA annealing, packaging and initiation of Gag translation through its involvement in leader tertiary structure. Interestingly, we found that in other retroviruses the PBS sequence can also base pair with a terminal loop of the stem-loops involved in RNA packaging.


Assuntos
Alpharetrovirus/genética , Pareamento de Bases , Genoma Viral , RNA Viral/genética , RNA Viral/metabolismo , RNA/metabolismo , Montagem de Vírus/genética , Regiões 5' não Traduzidas/química , Regiões 5' não Traduzidas/genética , Regiões 5' não Traduzidas/metabolismo , Sequência de Bases , Sítios de Ligação , Sequência Conservada/genética , Dimerização , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Filogenia , RNA/química , RNA/genética , RNA Viral/química , Sequências Reguladoras de Ácido Ribonucleico/genética , Ribonuclease T1/metabolismo
16.
Mol Cell Biol ; 22(1): 298-308, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11739742

RESUMO

Yeast transcription factor IIIC (TFIIIC) plays a key role in assembling the transcription initiation factor TFIIIB on class III genes after TFIIIC-DNA binding. The second largest subunit of TFIIIC, tau131, is thought to initiate TFIIIB assembly by interacting with Brf1/TFIIIB70. In this work, we have analyzed a TFIIIC mutant (tau131-DeltaTPR2) harboring a deletion in tau131 removing the second of its 11 tetratricopeptide repeats. Remarkably, this thermosensitive mutation was selectively suppressed in vivo by overexpression of B"/TFIIIB90, but not Brf1 or TATA-binding protein. In vitro, the mutant factor preincubated at restrictive temperature bound DNA efficiently but lost transcription factor activity. The in vitro transcription defect was abolished at high concentrations of B" but not Brf1. Copurification experiments of baculovirus-expressed proteins confirmed a direct physical interaction between tau131 and B". tau131, therefore, appears to be involved in the recruitment of both Brf1 and B".


Assuntos
Saccharomyces cerevisiae/metabolismo , Fatores Associados à Proteína de Ligação a TATA , Fatores de Transcrição TFIII/metabolismo , Fatores de Transcrição/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Genes Reporter , Heparina/farmacologia , Humanos , Dados de Sequência Molecular , Mutação , Subunidades Proteicas , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Temperatura , Fator de Transcrição TFIIIB , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição TFIII/química , Fatores de Transcrição TFIII/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA