Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(25): 17318-17324, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38869185

RESUMO

Covalent organic frameworks (COFs) containing well-defined redox-active groups have become competitive materials for next-generation batteries. Although high potentials and rate performance can be expected, only a few examples of p-type COFs have been reported for charge storage to date with even fewer examples on the use of COFs in multivalent ion batteries. Herein, we report the synthesis of a p-type highly porous and crystalline azatruxene-based COF and its application as a positive electrode material in Li- and Mg-based batteries. When this material is used in Li-based half cells as a COF/carbon nanotube (CNT) electrode, a discharge potential of 3.9 V is obtained with discharge capacities of up to 70 mAh g-1 at a 2 C rate. In Mg batteries using a tetrakis(hexafluoroisopropyloxy)borate electrolyte, cycling proceeds with an average discharge voltage of 2.9 V. Even at a fast current rate of 5 C, the capacity retention amounts to 84% over 1000 cycles.

2.
Chem Commun (Camb) ; 59(91): 13639-13642, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37905422

RESUMO

Covalent organic frameworks (COFs) are a prominent class of organic materials constructed from versatile building blocks via reversible reactions. The quality of imine-linked COFs can be improved by using amine monomers protected with benzophenone forming benzophenone imines. Here, we present a study on substituted benzophenones in COF synthesis via formal transimination. 12 para-substituted N-aryl benzophenone imines, with a range of electron-rich to electron-poor substituents, were prepared and their hydrolysis kinetics were studied spectroscopically. All substituted benzophenone imines can be employed in COF synthesis and lead to COFs with high crystallinity and high porosity. The substituents act innocent to COF formation as the substituted benzophenones are cleaved off. Imines can be tailored to their synthetic demands and utilized in COF formation. This concept can make access to previously unattainable, synthetically complex COF monomers feasible.

3.
Angew Chem Int Ed Engl ; 62(16): e202217917, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36753601

RESUMO

An ethylene glycol-decorated [6]cyclo-meta-phenylene (CMP) macrocycle was synthesized and utilized as a subunit to construct a fourfold AuI 2 -aryl metallacycle with an overall square arrangement. The corners consist of rigid dinuclear gold(I) complexes previously known to form only triangular metallacycles. The interplay between the conformational flexibility of the [6]CMP macrocycle and the rigid dinuclear gold(I) moieties enable the square geometry, as revealed by single-crystal X-ray diffraction. The formation of the gold complex shows size-selectivity compared to an alternative route using platinum(II) corner motifs. Upon reductive elimination, an all-organic ether-decorated carbon nanoring was obtained. Investigation as a host for the complexation of large guest molecules with a suitable convex π-surfaces was accomplished using isothermal NMR binding titrations. Association constants for [6]cycloparaphenylene ([6]CPP), [7]CPP, C60 , and C70 were determined.

4.
Nat Chem ; 15(3): 377-385, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36702883

RESUMO

Homoaromatic compounds possess an interrupted π system but display aromatic properties due to through-space or through-bond interactions. Stable neutral homoaromatic hydrocarbons have remained rare and are typically unstable. Here we present the preparation of a class of stable neutral homoaromatic molecules, supported by experimental evidence (ring current observed by NMR spectroscopy and equalization of bond lengths by X-ray structure analysis) and computational analysis via nucleus-independent chemical shifts (NICS) and anisotropy of the induced current density (ACID). We also show that one homoaromatic hydrocarbon is a photoswitch through a reversible photochemical [1, 11] sigmatropic rearrangement. Our computational analysis suggests that, upon photoswitching, the nature of the homoaromatic state changes in its perimeter from a more pronounced local 6π homoaromatic state to a global 10π homoaromatic state. These demonstrations of stable and accessible homoaromatic neutral hydrocarbons and their photoswitching behaviour provide new understanding and insights into the study of homoconjugative interactions in organic molecules, and for the design of new responsive molecular materials.

5.
J Am Chem Soc ; 145(5): 2840-2851, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36701177

RESUMO

Despite their inherent instability, 4n π systems have recently received significant attention due to their unique optical and electronic properties. In dibenzopentalene (DBP), benzanellation stabilizes the highly antiaromatic pentalene core, without compromising its amphoteric redox behavior or small HOMO-LUMO energy gap. However, incorporating such molecules in organic devices as discrete small molecules or amorphous polymers can limit the performance (e.g., due to solubility in the battery electrolyte solution or low internal surface area). Covalent organic frameworks (COFs), on the contrary, are highly ordered, porous, and crystalline materials that can provide a platform to align molecules with specific properties in a well-defined, ordered environment. We synthesized the first antiaromatic framework materials and obtained a series of three highly crystalline and porous COFs based on DBP. Potential applications of such antiaromatic bulk materials were explored: COF films show a conductivity of 4 × 10-8 S cm-1 upon doping and exhibit photoconductivity upon irradiation with visible light. Application as positive electrode materials in Li-organic batteries demonstrates a significant enhancement of performance when the antiaromaticity of the DBP unit in the COF is exploited in its redox activity with a discharge capacity of 26 mA h g-1 at a potential of 3.9 V vs. Li/Li+. This work showcases antiaromaticity as a new design principle for functional framework materials.

6.
J Am Chem Soc ; 144(19): 8707-8716, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35522997

RESUMO

Controlling the electronic spin state in single molecules through an external stimulus is of interest in developing devices for information technology, such as data storage and quantum computing. We report the synthesis and operation mode of two all-organic molecular spin-state switches that can be photochemically switched from a diamagnetic [electron paramagnetic resonance (EPR)-silent] to a paramagnetic (EPR-active) form at cryogenic temperatures due to a reversible electrocyclic reaction of its carbon skeleton. Facile synthetic substitution of a configurationally stable 1,14-dimethyl-[5]helicene with radical stabilizing groups at the 4,11-positions afforded two spin-state switches as 4,11-dioxo or 4,11-bis(dicyanomethylidenyl) derivatives in a closed diamagnetic form. After irradiation with an LED light source at cryogenic temperatures, a stable paramagnetic state is readily obtained, making this system a bistable magnetic switch that can reversibly react back to its diamagnetic form through a thermal stimulus. The switching can be monitored with UV/vis spectroscopy and EPR spectroscopy or induced by electrochemical reduction and reoxidation. Variable-temperature EPR spectroscopy of the paramagnetic species revealed an open-shell triplet ground state with an experimentally determined triplet-singlet energy gap of ΔET-S < 0.1 kcal mol-1. The inherent chirality and the ability to separate the enantiomers turns this helical motif into a potential chiroptical spin-state switch. The herein developed 4,11-substitution pattern on the dimethyl[5]helicene introduces a platform for designing future generations of organic molecular photomagnetic switches that might find applications in spintronics and related fields.

7.
Angew Chem Int Ed Engl ; 61(31): e202206963, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35593009

RESUMO

Many chemicals known today are partially or fully aromatic, since a ring framework experiences additional stabilization through the delocalization of π-electrons. While aromatic rings with equal numbers of π-electrons and ring atoms such as benzene are particularly stable, those with the minimally required two π-electrons are very rare and yet remain limited to three- and four-membered rings if not stabilized in the coordination sphere of heavy metals. Here we report the facile synthesis of a dipotassium cyclopentagallene, a unique example of a five-membered aromatic ring stabilized by only two π-electrons. Single-crystal X-ray diffraction revealed a planar Ga5 ring with almost equal gallium-gallium bond lengths, which together with computational and spectroscopic data confirm its aromatic character. Our results prove that aromatic stabilization goes far beyond what has previously been assumed as minimum π-electron count in a five-atom ring fragment.

8.
J Am Chem Soc ; 144(7): 3127-3136, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35143726

RESUMO

There has been rapid progress on the chemistry of supramolecular scaffolds that harness sunlight for aqueous photocatalytic production of hydrogen. However, great efforts are still needed to develop similar photosynthetic systems for the great challenge of CO2 reduction especially if they avoid the use of nonabundant metals. This work investigates the synthesis of supramolecular polymers capable of sensitizing catalysts that require more negative potentials than proton reduction. The monomers are chromophore amphiphiles based on a diareno-fused ullazine core that undergo supramolecular polymerization in water to create entangled nanoscale fibers. Under 450 nm visible light these fibers sensitize a dinuclear cobalt catalyst for CO2 photoreduction to generate carbon monoxide and methane using a sacrificial electron donor. The supramolecular photocatalytic system can generate amounts of CH4 comparable to those obtained with a precious metal-based [Ru(phen)3](PF6)2 sensitizer and, in contrast to Ru-based catalysts, retains photocatalytic activity in all aqueous media over 6 days. The present study demonstrates the potential of tailored supramolecular polymers as renewable energy and sustainability materials.

9.
Angew Chem Int Ed Engl ; 60(27): 14909-14914, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-33887087

RESUMO

A set of strained aromatic macrocycles based on [n]cyclo-2,7-(4,5,9,10-tetrahydro)pyrenylenes is presented with size-dependent photophysical properties. The K-region of pyrene was functionalized with ethylene glycol groups to decorate the outer rim and thereby confine the space inside the macrocycle. This confined space is especially pronounced for n=5, which leads to an internal binding of up to 8.0×104  m-1 between the ether-decorated [5]cyclo-2,7-pyrenylene and shape-complementary crown ether-cation complexes. Both the ether-decorated [n]cyclo-pyrenylenes as well as one of their host-guest complexes have been structurally characterized by single-crystal X-ray analysis. In combination with computational methods the structural and thermodynamic reasons for the exceptionally strong binding have been elucidated. The presented rim confinement strategy makes cycloparaphenylenes an attractive supramolecular host family with a favorable, size-independent read-out signature and binding capabilities extending beyond fullerene guests.

11.
Adv Mater ; 32(17): e1907247, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32162428

RESUMO

Self-assembly is a bioinspired strategy to craft materials for renewable and clean energy technologies. In plants, the alignment and assembly of the light-harvesting protein machinery in the green leaf optimize the ability to efficiently convert light from the sun to form chemical bonds. In artificial systems, strategies based on self-assembly using noncovalent interactions offer the possibility to mimic this functional correlation among molecules to optimize photocatalysis, photovoltaics, and energy storage. One of the long-term objectives of the field described here as supramolecular energy materials is to learn how to design soft materials containing light-harvesting assemblies and catalysts to generate fuels and useful chemicals. Supramolecular energy materials also hold great potential in the design of systems for photovoltaics in which intermolecular interactions in self-assembled structures, for example, in electron donor and acceptor phases, maximize charge transport and avoid exciton recombination. Possible pathways to integrate organic and inorganic structures by templating strategies and electrodeposition to create materials relevant to energy challenges including photoconductors and supercapacitors are also described. The final topic discussed is the synthesis of hybrid perovskites in which organic molecules are used to modify both structure and functions, which may include chemical stability, photovoltaics, and light emission.

12.
Chempluschem ; 82(3): 493-497, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31962013

RESUMO

Resorcin[4]arene cavitands are well-known supramolecular hosts, and their outstanding guest-binding abilities in solution have been studied in detail in recent decades. In a systematic approach, different resorcin[4]arene cavitands and container molecules are characterized as affinity materials for gravimetric sensing using high-fundamental-frequency quartz crystal microbalances. Analysis of their affinity toward a series of various analytes reveals a remarkable dependence of both selectivity and sensitivity on the shape, accessibility, and size of the cavity, along with their supramolecular interactions with the host molecules.

13.
Angew Chem Int Ed Engl ; 56(4): 1152-1157, 2017 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-28000334

RESUMO

Supramolecular capsules were assembled by neutral halogen bonding (XB) and studied in the solid state, in solution, and in the gas phase. The geometry of the highly organized capsules is shown by an X-ray crystal structure which features the assembly of two XB hemispheres, geometrically rigidified by H-bonding to eight MeOH molecules and encapsulation of two benzene guests. To enhance capsular association strength, tuning the XB donor is more efficient than tuning the XB acceptor, due to desolvation penalties in protic solvents, as shown for a tetraquinuclidine XB acceptor hemisphere. With a tetra(iodoethynyl) XB donor and a tetralutidine XB acceptor, the association in deuterated benzene/acetone/methanol 70:30:1 at 283 K reaches Ka =(2.11±0.39)×105 m-1 (ΔG=-6.9±0.1 kcal mol-1 ). The stability of the XB capsules in the gas phase was confirmed by electrospray ionization mass spectrometry (ESI-MS). A new guest binding site was uncovered within the elongated iodoethynyl capsule.

14.
Chemistry ; 22(30): 10539-47, 2016 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-27363287

RESUMO

The design and synthesis of Aviram-Ratner-type molecular rectifiers, featuring an anilino-substituted extended tetracyanoquinodimethane (exTCNQ) acceptor, covalently linked by the σ-spacer bicyclo[2.2.2]octane (BCO) to a tetrathiafulvalene (TTF) donor moiety, are described. The rigid BCO spacer keeps the TTF donor and exTCNQ acceptor moieties apart, as demonstrated by X-ray analysis. The photophysical properties of the TTF-BCO-exTCNQ dyads were investigated by UV/Vis and EPR spectroscopy, electrochemical studies, and theoretical calculations. Langmuir-Blodgett films were prepared and used in the fabrication and electrical studies of junction devices. One dyad showed the asymmetric current-voltage (I-V) curve characteristic for rectification, unlike control compounds containing the TTF unit but not the exTCNQ moiety or comprising the exTCNQ acceptor moiety but lacking the donor TTF part, which both gave symmetric I-V curves. The direction of the observed rectification indicated that the preferred electron current flows from the exTCNQ acceptor to the TTF donor.

15.
Chemistry ; 22(20): 6750-4, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-26991861

RESUMO

Shigellosis is one of the most severe diarrheal diseases worldwide without any efficient treatment so far. The enzyme tRNA-guanine transglycosylase (TGT) has been identified as a promising target for small-molecule drug design. Herein, we report a transition-state analogue, a small, immucillin-derived inhibitor, as a new lead structure with a novel mode of action. The complex inhibitor synthesis was accomplished in 18 steps with an overall yield of 3 %. A co-crystal structure of the inhibitor bound to Z. mobilis TGT confirmed the predicted conformation of the immucillin derivative in the enzyme active site.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Pentosiltransferases/antagonistas & inibidores , Pirimidinas/química , Pirróis/química , Pirrolidinas/química , Zymomonas/enzimologia , Cristalografia por Raios X , Modelos Moleculares , Conformação Molecular , Pentosiltransferases/química , Pirimidinas/síntese química , Pirróis/síntese química , Pirrolidinas/síntese química , Estereoisomerismo
16.
Chemistry ; 22(1): 211-21, 2016 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-26578105

RESUMO

Protein kinases continue to be hot targets in drug discovery research, as they are involved in many essential cellular processes and their deregulation can lead to a variety of diseases. A series of 32 enantiomerically pure inhibitors was synthesized and tested towards protein kinase A (PKA) and protein kinase B mimic PKAB3 (PKA triple mutant). The ligands bind to the hinge region, ribose pocket, and glycine-rich loop at the ATP site. Biological assays showed high potency against PKA, with Ki values in the low nanomolar range. The investigation demonstrates the significance of targeting the often neglected glycine-rich loop for gaining high binding potency. X-ray co-crystal structures revealed a multi-facetted network of ligand-loop interactions for the tightest binders, involving orthogonal dipolar contacts, sulfur and other dispersive contacts, amide-π stacking, and H-bonding to organofluorine, besides efficient water replacement. The network was analyzed in a computational approach.


Assuntos
Glicina/química , Hidrocarbonetos Fluorados/química , Peptídeos e Proteínas de Sinalização Intracelular/química , Inibidores de Proteínas Quinases/química , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Descoberta de Drogas , Ligantes , Modelos Moleculares
17.
Angew Chem Int Ed Engl ; 54(42): 12339-44, 2015 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-26013544

RESUMO

Molecular capsules based solely on the interaction of halogen bonding (XB) are presented along with their host-guest binding properties in solution. The first example of a well-defined four-point XB supramolecular system is realized by decorating resorcin[4]arene cavitands with polarized halogen atoms for dimerization with tetra(4-pyridyl) resorcin[4]arene cavitands. NMR binding data for the F, Cl, Br, and I cavitands as the XB donor show association constants (Ka ) of up to 5370 M(-1) (ΔG283 K =-4.85 kcal mol(-1) , for I), even in XB-competitive solvent, such as deuterated benzene/acetone/methanol (70:30:1) at 283 K, where comparable monodentate model systems show no association. The XB capsular geometry is evidenced by two-dimensional HOESY NMR, and the thermodynamic profile shows that capsule formation is enthalpically driven. Either 1,4-dioxane or 1,4-dithiane are encapsulated within each of the two separate cavities within the XB capsule, with of up to Ka =9.0 10(8) M(-2) (ΔG283 K =-11.6 kcal mol(-1) ).

18.
J Am Chem Soc ; 137(22): 7178-88, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-25978774

RESUMO

Three series of stable, neutral, π-extended bispentalene derivatives, with two pentalenes fused to a central benzene or naphthalene moiety, have been prepared through a modified double carbopalladation cascade reaction. While these chromophores feature skeletons with [4n+2] π-electron perimeters, the two 8 π-electron pentalene subunits strongly influence bonding and spectral properties. (1)H NMR spectra showed large upfield shifts of the protons in the pentalene moieties, comparable to antiaromatic monobenzopentalenes. Further investigations on magnetic ring currents through NICS-XY-scans suggest a global paratropic current and a local diatropic current at the central benzene ring in two of the series, while the third series, with a central naphthalene ring, showed more localized ring currents, with stronger paratropic ring currents on the pentalene moieties. X-ray diffraction analyses revealed planar bispentalene cores with large double- and single-bond alternation in the pentalene units, characteristic for antiaromaticity, and small alternation in the central aromatic rings. In agreement with TD-DFT calculations, both optical and electrochemical data showed much smaller HOMO-LUMO energy gaps compared to other neutral, acene-like hydrocarbons with the same number of fused rings. Both experimental and computational results suggest that the molecular properties of the presented bispentalenes are dominated by the antiaromatic pentalene-subunits despite the [4n+2] π-electron perimeter of the skeletons.

19.
Angew Chem Int Ed Engl ; 54(11): 3290-327, 2015 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-25630692

RESUMO

Structure-based ligand design in medicinal chemistry and crop protection relies on the identification and quantification of weak noncovalent interactions and understanding the role of water. Small-molecule and protein structural database searches are important tools to retrieve existing knowledge. Thermodynamic profiling, combined with X-ray structural and computational studies, is the key to elucidate the energetics of the replacement of water by ligands. Biological receptor sites vary greatly in shape, conformational dynamics, and polarity, and require different ligand-design strategies, as shown for various case studies. Interactions between dipoles have become a central theme of molecular recognition. Orthogonal interactions, halogen bonding, and amide⋅⋅⋅π stacking provide new tools for innovative lead optimization. The combination of synthetic models and biological complexation studies is required to gather reliable information on weak noncovalent interactions and the role of water.


Assuntos
Disciplinas das Ciências Biológicas , Química Farmacêutica , Água/química , Modelos Moleculares
20.
Chemistry ; 21(1): 228-38, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25359430

RESUMO

A disulfide intercalator toolbox was developed for site-specific attachment of a broad variety of functional groups to proteins or peptides under mild, physiological conditions. The peptide hormone somatostatin (SST) served as model compound for intercalation into the available disulfide functionalization schemes starting from the intercalator or the reactive SST precursor before or after bioconjugation. A tetrazole-SST derivative was obtained that undergoes photoinduced cycloaddition in mammalian cells, which was monitored by live-cell imaging.


Assuntos
Dissulfetos/química , Substâncias Intercalantes/química , Somatostatina/química , Linhagem Celular Tumoral , Química Click , Reação de Cicloadição , Dendrímeros/química , Doxorrubicina/química , Humanos , Microscopia Confocal , Somatostatina/metabolismo , Tetrazóis/química , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA