Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35380466

RESUMO

In Korea, most of the grafted watermelons are a fusion of bottle gourd (Lagenaria siceraria) as a rootstock and watermelon (Citrullus lanatus) as a scionstock (Lee et al., 2010). Currently, we have collected several samples from grafted watermelon displaying symptoms of yellowing, withered and wilting leaves. When the symptomatic stem was excised, browning vascular tissues were observed due to the colonization of fungal pathogen. From the samples obtained, 25 fungal isolates were identified as species of Fusarium. Among 25 isolates, 18 were identified as Fusarium oxysporum, four as Fusarium solani, and three as Fusarium equiseti (F. equiseti) . Initial assessment showed that one of the F. equiseti isolates (NIHHS 16-126) was highly virulent to rootstock. Interestingly, this is the first time F. equiseti has been identified pathogenic to grafted watermelon. NIHHS 16-126 isolate was collected from watermelon cultivation field around Buyeo-gun (36.25951°N, 126.92044°E) county. Disease incident was estimated to infect approximately 10% of the watermelon plants cultivated in this area. NIHHS 16-126 isolate was examined to confirm its identity. On potato dextrose agar, colonies appeared yellowish-brown while the aerial mycelium was whitish to peach in color. Macroconidia were relatively long (20.21 - 51.13 × 2.30 - 4.5 µm, n=50), comprise of 3-6 septa, curvature shape and its conidiophores were with monophialides. However, microconidia formation was not observed. These morphological characteristics resemble F. equiseti characters as described by Hyun (2019). For molecular identification, an internal transcribed spacer of ribosomal DNA (ITS-rDNA), elongation factor-1α (EF-1α), and beta-tubulin (ß-tub) genes were sequenced using primer pairs of ITS1/ITS4 (White et al., 1990), EF1-728F/EF1-986R (Glass and Donaldson 1995), and Bt2a/Bt2b (Carbone and Kohn 1999). BLASTN analysis revealed that ITS-rDNA (LC648248), EF-1α (LC648250), and ß-tub (LC648249) sequences were 99-100% identical to F. equiseti reference sequences (KF515650, KF747331, and KF747330) infected Avicennia marina in China (Lu 2014). Phylogenetic analysis of concatenated ITS-rDNA, EF-1α and ß-tub sequences showed that this isolate clustered in the same clade as F. equiseti, confirming its identity as F. equiseti. For the inoculation, roots of 12-days-old seedlings (watermelon and bottle gourd, n=10 each) were dipped in the conidia suspension (1x106 conidia/µL) for 30 min. Inoculated seedlings were planted in the soil before being transferred to the greenhouse (temperature; 30°C, daylight; 14 hours). Control plants were inoculated with sterile water. Results showed that after 21 days post-inoculation, all inoculated bottle gourd seedlings (n=10) wilted and eventually died. In contrast, none of the inoculated watermelons or control seedlings were affected. Re-isolation of three fungal isolates (infected root) showed that their morphology and gene markers sequence were identical to the original isolates thus fulfilled Koch's postulates. Bottle gourd is the most preferred rootstock for grafted watermelons among Korean farmers due to its ability to resist Fusarium spp. infection. Therefore, the identification of F. equiseti as a fungal that is pathogenic to rootstock is crucial information to manage fusarium wilt disease among grafted watermelon. To our knowledge, this is the first report confirming F. equiseti infection in grafted watermelon plants in Korea.

3.
Gene ; 809: 146041, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34710526

RESUMO

Plant immunity to pathogen infections is a dynamic response that involves multiple organelles and defence signalling systems such as hypersensitive response (HR) and systemic acquired resistance (SAR). The latter requires the function of Pathogenesis-related (PR) proteins, a common plant protein family with diverse roles in plant innate immunity. Our previous proteomics study showed that a PR gene (ITC1587_Bchr9_P26466_MUSBA) was differentially regulated during a compatible banana-M. incognita interaction, substantiating the isolation of this gene in the current study. Here, we successfully isolated and characterised Pathogenesis-related-10 (PR10) gene with ß-1,3-glucanase and ribonuclease (RNase) activities from two Musa acuminata cultivars (denoted as MaPR10) namely Berangan and Grand Naine (ITC1256). We found that MaPR10 cloned sequences possess glycine-rich loop domain and shared conserved motifs specific to PR10 gene group, confirming its identity as a member of this group. Interestingly, we also found a catalytic domain sequence for glycoside hydrolase family 16 (EXDXXE), unique only to MaPR10 cloned sequences. Two peptide variants closely related to the reference sequence ITC1587_Bchr9_P26466_MUSBA namely MaPR10-BeB5 and MaPR10-GNA5 were overexpressed and purified to test for their functionality. Here, we confirmed that both protein variants possess ß-1,3-glucanase and ribonuclease (RNase) activities, and inhibit the growth of Aspergillus fumigatus, a human opportunistic pathogen. To our knowledge, this is the first PR10 plant proteins with such properties to be reported thus far.


Assuntos
Musa/genética , Musa/parasitologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tylenchoidea/patogenicidade , Animais , Antifúngicos/farmacologia , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus niger/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Parasita/genética , Cebolas/genética , Filogenia , Imunidade Vegetal/genética , Proteínas de Plantas/farmacologia , Raízes de Plantas/genética , Raízes de Plantas/parasitologia , Plantas Geneticamente Modificadas
4.
Plant Dis ; 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34433312

RESUMO

Botryosphaeria dothidea (B. dothidea) is a fungal pathogen commonly associated with stem canker, dieback, and rot disease in a variety of woody plants worldwide (Dong and Guo, 2020). In Korea, B. dothidea was reported to cause a disease problem to serval crops such as apple and blueberry (Kim, 1995; Choi, 2011). In early 2020, a typical symptom resembling the stem rot disease was spotted to occur at a plumcot cultivation area around Wanju (35.827870, 127.030380) province, Korea. At the early stage of infection, a small blister appeared on the plumcot branch and stem. However, as the blister extended, a light brown canker was observed appeared on the infected area and in some cases a sticky sap oozed from the branch bark crack. If not managed or treated properly, all leaves beyond the infection site will turn brown, wilt, and the whole plumcot tree eventually dies. A survey in the affected area showed that approximately 5% of the plumcot trees were infected which cause up to 10% reduction in total production. To identify the causal agent, symptomatic tissues were excised and surface sterilized with 70% ethanol for 30 sec followed by 1% NaClO for 30 sec before rinsing with sterile water, thrice. The samples were then dried with a piece of filter paper and later air-dried before being placed on a potato dextrose agar (PDA). The PDA plates were then incubated at 25°C for 5 days with 12 hours light/dark cycles period. Among several fungal isolates obtained, four were selected for further analyses. Morphological identification revealed that the fungal conidia were hyaline, ovoid, fusiform (type that rarely form a septum) and unicellular with an average size of 18 - 20 µm × 4.5 -5.5 µm (n = 50). These morphological characters have a strong resemblance to B. dothidea that described by Slipper et al., (2004). For molecular identification, Internal transcribed spacer (ITS), beta-tubulin (ß-tubulin) and elongation factor 1 alpha (EF-1α) were amplified and sequenced using universal primer pairs ITS1/ITS4 (White et al., 1990), Bt2a/Bt2b (Glass and Donaldson, 1995) and EF1/EF2 (O'Donnell et al. 1998) respectively. Alignment analysis showed that ITS (LC602817), ß-tubulin (LC602820) and EF-1α (LC602821) sequences were 99-100% identical to the orthologous genes identified in B. dothidea infecting soybean in China [MW130133 (identity 537/536 bp), MW147482 (identity 394/394 bp) and MW147481 (identify 250/250 bp) respectively] (Chen et al. 2021). However, phylogenetic analysis of concatenated ITS, ß-tubulin and EF-1α genes sequence established the identity of these isolate as B. dothidea. Due to the 100% identical at the molecular level, isolate NIHHS 20-262 was selected as a representative for further analysis. For the pathogenicity test, fungal mycelium (via PDA plug) was used as a source of inoculum for both intact and detached plumcot stems trials. For the intact trial, mycelium was inoculated on the wounded spots of ten plumcot stems that grew at the NIHHS trial farm. Ten days post-inoculation (dpi), disease symptoms i.e. stem colour turn from greenish to dark brown was observed at the inoculated sites. For the detached trial, mycelium was inoculated on the wounded spots of ten detached plumcot stems. The inoculated stems were kept in a closed container to maintain 90% humidity before incubated at 25ºC in the dark. Interestingly, on the detached stems, disease symptoms (greenish colour turn to dark brown) were observed to appear seven days early compare to intact stems. A sterile PDA plug replacing fungal mycelium served as a negative control and the result shows no symptoms were observed on either intact or detached control stems. For consistency purposes, pathogenicity tests on intact stems were performed on three different plumcot trees, whereas three biological replicates for detached stems. Isolation and re-identification of two colonies from the infected sites (intact and detached stems) were attempted and the results obtained were identical to the original isolate, thus fulfilling Koch's postulates. Local farmers described this disease as a "certain death disease" in plumcot. Therefore, accurate identification of B. dothidea as the causal agent is critical for effective disease management to minimise qualitative and quantitative losses in the plumcot industry. Although has been reported to cause dieback disease in blueberry in Korea (Choi, 2011), to our knowledge, this is the first study to report B. dothidea causing stem rot diseases on the plumcot trees in Korea.

5.
Plant Dis ; 2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-32990518

RESUMO

Plumcot is an interspecific hybrid product between Japanese plums (Prunus salicina) and apricots (Prunus armeniaca) obtained by the NIHHS, Korea in 1999 [1]. At the early of 2017, black spots-like symptoms were observed on plumcot fruits and leaves at cultivation areas in Naju (34.965595, 126.665853) province. Further investigation shows that approximately 60% of the plumcot leaves in the affected orchard were infected, which caused 40% total production loss. At the early stage of infection, disease symptoms appear as small, angular and water-soaked spots and develop into circular brown spots at the later stages of infection. As the disease progresses, the leaf tissues around the spots became yellow and the lesions enlarged. When the adjacent lesions merged and the necrotic tissues fall off, shot-hole symptoms appear on the leaves. To identify the causal agent of this disease, infected leaf tissues were excised and surface-sterilized with 1% NaOCl for 30 secs prior to rinsing with sterile water, thrice . Tissue samples were then placed in sterile water (0.5 mL) for 5 min before its aliquots were streaked onto Luria-Bertani (LB) agar. Plates then were incubated at 28°C. To obtain pure colonies, bacteria were re-streak into a new LB agar and colonies showing typical Xanthomonas spp. morphology (i.e. convex, smooth, yellow, and mucoid) were subjected to Gram staining assay. For molecular identification, 16S ribosomal DNA (16S-rDNA) and gyrase B (gyrB) genes were amplified using a 9F/1512r and UP-1/UP-2Sr primers [2,3] respectively from 5 gram-negative isolates. PCR products were sequenced and analysed using BLASTN. Result shows that 16S-rDNA and gyrB genes are 99-100% identical to a similar genomic region of Xanthomonas arboricola pv. pruni (Xap) isolated in almond (MK156163), peach (MG049922) and apricot (KX950802) respectively [4,5,6]. 16S-rDNA and gyrB gene sequences were deposited in the GenBank (LC485472 and LC576824), whereas pathogen isolate was deposited into Korean Agricultural Culture Collection (KACC19949). Pathogenicity test was performed using Xap bacterial suspension (108 cfu/mL) inoculated on the abaxial and adaxial surface of plumcot detached leaves. For inoculation, 10 healthy young leaves were used whereas, 5 young leaves mock-inoculated with sterile LB broth were used as a control. Both leaf samples were kept in a closed container to maintain 100% humidity before being incubated at 25°C. The water-soaked symptoms were observed visually on the inoculated leaves 2 to 3 days post-inoculation. No water-soaked symptoms were observed on the control leaves. Morphology and sequences of molecular markers used showed that the 3 bacterial colonies re-isolated from the inoculated leaves were identical to the original isolate, fulfilling Koch's postulate. Pathogenicity tests were repeated twice and the results obtained were consistent with the first experiment. As a new variety of stone fruit cultivated in Korea, information about pathogens and registered agrochemicals to control disease outbreak in plumcot are still limited. Therefore, the identification of Xap as a causal agent to the black spot disease is critical for the development of disease management strategies and to identify appropriate agrochemicals to control the occurrence of this disease in the field. To our knowledge, this is the first report of Xap as a causal agent to the shot-hole disease on the plumcot in Korea.

6.
Plant Dis ; 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32967561

RESUMO

Chinese cabbage (Brassica rapa L.) is one of the most important vegetables in Korea due to its role as the main ingredient for the making of Kimchi. In June 2014, disease symptoms of leaves wilt, dry, and drop off on Chinese cabbage were observed in a Chinese cabbage farm located at Taebeak (37°26'50.7"N 128°95'50.0"E), Gangwon province, Korea. This disease was observed on approximately 35% of the plants in the field, causing an almost 10% decrease in total production. At the early stage of infection, the color at the edge of the plant foliage changed from green to yellow. As the disease progressed, infected leaves wilted, dried off, and detached from the plant. Soft rot that occurred at the base of the leaf stem and root tissues caused the infected leaves to dry and fell off the plant. To identify the causal agent, a small piece of infected leaf tissues was sterilized with 1% sodium hypochlorite solution for 1 min and rinsed with sterile water before it was transferred onto potato dextrose agar (PDA) media. The plates were then incubated at 25°C for 10 days in the dark. Fungal colonies grown on PDA media were of white-creamy in color with an abundance of mycelia and later develop into black color due to the formation of microsclerotia embedded in the media. Microscopic examination showed conidiophores and phialides were both appeared in a verticillate arrangement, whereas conidia were hyaline, smooth-walled, and ellipsoidal to oval with average size 5.4×2.5 µm (n=100). Microsclerotia appeared in elongate to an irregularly spherical shape and greatly variable in size. The morphological attributes of the fungal isolate described above were comparable to the characteristics of Verticillium dahliae Kleb. (V. dahliae) described by Hawksworth and Talboys (1970), and V. dahliae isolated from Chinese cabbage in Japan reported in Kishi (1998). Pathogenicity test was performed by soaking twelve individual Chinese cabbage seedlings for 15 min into fungal pathogen conidial suspension (1x106 conidium/ml) before transferred into soil tray. The same number of non-inoculated seedlings on the soil tray was used as a control. Inoculated and control plants were then covered with a plastic bag for 24 hours to maintain high humidity before transferred into the greenhouse (25°C). Seven days post-inoculation (dpi), treated plant leaves turned yellow, and soft rot was observed. At 10-dpi, plant leaf tissues dried off and severe soft rot occurred. Pathogenicity test was repeated three times and consistent results were obtained. The re-isolated fungal pathogen from the inoculated plants showed identical morphological characteristics to the original isolates, thus fulfilling Koch's postulates. For further identification, PCR amplification targeting Internal Transcribed Spacer (ITS) and RNA polymerase II gene (RPB2) regions were performed (Liu et al., 1999; White et al., 1990). Each PCR product was sequenced and deposited in the GenBank under the accession LC549667 and LC061275, respectively. Sequence analysis using BLAST showed that the nucleotide sequences of ITS and RPB2 DNA fragments are 99-100% identical to the reference strain of V. dahliae available in the NCBI database (MG585719, HE972023, XM_009652520 and DQ522468, respectively). Therefore, based on the results of morphological and molecular analyses, the fungal pathogen isolated from Chinese cabbage in this study was identified as V. dahliae and deposited in the National Institute of Horticultural and Herbal Science germplasm collection (NIHHS 13-252). Recently, due to high demand and a more competitive price, more Chrysanthemum farmers in Korea switch their crops to Chinese cabbage. Interestingly, the occurrence of V. dahliae infection was also reported to occur in Chrysanthemum plants in Korea (Han et al. 2007), which indicates a serious problem ahead to these farmers. Therefore, in this current study, the identification of V. dahliae pathogenic to Chinese cabbage will provide vital knowledge for the development of disease management strategies to minimize the loss of crop production. To our knowledge, this is the first report that V. dahliae causes Verticillium wilt disease on Chinese cabbage in Korea.

7.
Front Plant Sci ; 10: 1402, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31749820

RESUMO

γ-glutamyl transferases/transpeptidases (E.C. 2.3.2.2, GGTs) are involved in the catabolism of many compounds that are conjugated to glutathione (GSH), which have a variety of roles. GSH can act as storage and transport vehicle for reduced sulfur; it is involved in the detoxification of xenobiotics and also acts as a redox buffer by utilizing its thiol residue to protect against reactive oxygen species, which accumulate in response to biotic and abiotic stress. Furthermore, many distinctive flavor and aroma compounds in Sauvignon blanc wines originate from odorless C5- and C6-GSH conjugates or their GGT catabolized derivatives. These precursors are then processed into their volatile forms by yeast during fermentation. In many plant species, two or more isoforms of GGTs exist that target GSH-conjugates to either the apoplast or the vacuole. A bioinformatics approach identified multiple GGT candidates in grapevine (Vitis vinifera). However, only a single candidate, VvGGT3, has all the conserved residues needed for GGT activity. This is intriguing given the variety of roles of GSH and GGTs in plant cells. Characterization of VvGGT3 from cv. Sauvignon blanc was then undertaken. The VvGGT3 transcript is present in roots, leaves, inflorescences, and tendril and at equal abundance in the skin, pulp, and seed of mature berries and shows steady accumulation over the course of whole berry development. In addition, the VvGGT3 transcript in whole berries is upregulated upon Botrytis cinerea infection as well as mechanical damage to leaf tissue. VvGGT3-GFP fusion proteins transiently over-expressed in onion cells were used to study subcellular localization. To confirm VvGGT3 activity and localization in vivo, the fluorescent γ-glutamyl-7-amido-4-methylcoumarin substrate was added to Nicotiana benthamiana leaves transiently over-expressing VvGGT3. In combination, these results suggest that the functional VvGGT3 is associated with membrane-like structures. This is not consistent with its closely related functionally characterized GGTs from Arabidopsis, radish and garlic.

8.
Mol Biol Rep ; 45(3): 263-277, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29427121

RESUMO

Jasmonic acid (JA) is known to be an important phytohormone that orchestrates plant defence mechanisms against a range of herbivores and pathogens. Studies have suggested allene oxide synthase (AOS; E.C 4.2.1.92), the first committed step in JA biosynthesis, is essential for JA biosynthesis, yet clear evidence of its role as a biosynthetic regulatory point is lacking, in the main due to conflicting results derived from transgenic studies. However other studies lend support to a biosynthetic regulatory role for AOS. These studies have suggested that certain amino acid substitutions can increase the biosynthetic capacity of the enzyme and consequently improve pathogen tolerance in plants. To explore the role of AOS in Grapevine we isolated and functionally characterised this enzyme for the first time from Vitis vinifera L. Sauvignon blanc. The cloned AOS consisted of a single 1563 bp open reading frame. Comparative sequence analysis showed that the cloned gene (VvAOS) was highly conserved compared to those from other species. Complementation of an Arabidopsis AOS null mutant (aos) with VvAOS recovered the male sterile mutant phenotype and confirmed its function. Transcript analysis showed that VvAOS was wound responsive in leaves and was detectable in most tissues, with the highest levels of transcript in the mesocarp (pulp) of mature berries. Sub-cellular localisation of the VvAOS protein indicated that VvAOS is associated with the chloroplast membrane. Unexpectedly high levels of VvAOS transcript in complemented aos lines did not lead to predicted increases in JA. We have functionally characterised the sole AOS from Grapevine. Patterns of transcript accumulation in grapevine suggest roles in growth, development as well as an important role for JA in fruit ripening. Expression of VvAOS in Arabidopsis suggest complex epigenetic interactions between transgenic and endogenous AOS alleles, providing a possible explanation for why transgenic studies of AOS have delivered conflicting data pointing to a questionable role of AOS as a key regulatory point in JA biosynthesis.


Assuntos
Oxirredutases Intramoleculares/metabolismo , Vitis/enzimologia , Arabidopsis/enzimologia , Arabidopsis/genética , Ciclopentanos/metabolismo , Oxirredutases Intramoleculares/genética , Oxilipinas/metabolismo , Fenótipo , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Transdução de Sinais , Vitis/genética , Vitis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA