Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Infect Control Hosp Epidemiol ; : 1-4, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38835227

RESUMO

Throughout the COVID-19 pandemic, many areas in the United States experienced healthcare personnel (HCP) shortages tied to a variety of factors. Infection prevention programs, in particular, faced increasing workload demands with little opportunity to delegate tasks to others without specific infectious diseases or infection control expertise. Shortages of clinicians providing inpatient care to critically ill patients during the early phase of the pandemic were multifactorial, largely attributed to increasing demands on hospitals to provide care to patients hospitalized with COVID-19 and furloughs.1 HCP shortages and challenges during later surges, including the Omicron variant-associated surges, were largely attributed to HCP infections and associated work restrictions during isolation periods and the need to care for family members, particularly children, with COVID-19. Additionally, the detrimental physical and mental health impact of COVID-19 on HCP has led to attrition, which further exacerbates shortages.2 Demands increased in post-acute and long-term care (PALTC) settings, which already faced critical staffing challenges difficulty with recruitment, and high rates of turnover. Although individual healthcare organizations and state and federal governments have taken actions to mitigate recurring shortages, additional work and innovation are needed to develop longer-term solutions to improve healthcare workforce resiliency. The critical role of those with specialized training in infection prevention, including healthcare epidemiologists, was well-demonstrated in pandemic preparedness and response. The COVID-19 pandemic underscored the need to support growth in these fields.3 This commentary outlines the need to develop the US healthcare workforce in preparation for future pandemics.

2.
Infect Control Hosp Epidemiol ; : 1-3, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38835222

RESUMO

Throughout history, pandemics and their aftereffects have spurred society to make substantial improvements in healthcare. After the Black Death in 14th century Europe, changes were made to elevate standards of care and nutrition that resulted in improved life expectancy.1 The 1918 influenza pandemic spurred a movement that emphasized public health surveillance and detection of future outbreaks and eventually led to the creation of the World Health Organization Global Influenza Surveillance Network.2 In the present, the COVID-19 pandemic exposed many of the pre-existing problems within the US healthcare system, which included (1) a lack of capacity to manage a large influx of contagious patients while simultaneously maintaining routine and emergency care to non-COVID patients; (2) a "just in time" supply network that led to shortages and competition among hospitals, nursing homes, and other care sites for essential supplies; and (3) longstanding inequities in the distribution of healthcare and the healthcare workforce. The decades-long shift from domestic manufacturing to a reliance on global supply chains has compounded ongoing gaps in preparedness for supplies such as personal protective equipment and ventilators. Inequities in racial and socioeconomic outcomes highlighted during the pandemic have accelerated the call to focus on diversity, equity, and inclusion (DEI) within our communities. The pandemic accelerated cooperation between government entities and the healthcare system, resulting in swift implementation of mitigation measures, new therapies and vaccinations at unprecedented speeds, despite our fragmented healthcare delivery system and political divisions. Still, widespread misinformation or disinformation and political divisions contributed to eroded trust in the public health system and prevented an even uptake of mitigation measures, vaccines and therapeutics, impeding our ability to contain the spread of the virus in this country.3 Ultimately, the lessons of COVID-19 illustrate the need to better prepare for the next pandemic. Rising microbial resistance, emerging and re-emerging pathogens, increased globalization, an aging population, and climate change are all factors that increase the likelihood of another pandemic.4.

3.
Infect Control Hosp Epidemiol ; : 1-5, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38835229

RESUMO

The COVID-19 has had major direct (e.g., deaths) and indirect (e.g., social inequities) effects in the United States. While the public health response to the epidemic featured some important successes (e.g., universal masking ,and rapid development and approval of vaccines and therapeutics), there were systemic failures (e.g., inadequate public health infrastructure) that overshadowed these successes. Key deficiency in the U.S. response were shortages of personal protective equipment (PPE) and supply chain deficiencies. Recommendations are provided for mitigating supply shortages and supply chain failures in healthcare settings in future pandemics. Some key recommendations for preventing shortages of essential components of infection control and prevention include increasing the stockpile of PPE in the U.S. National Strategic Stockpile, increased transparency of the Stockpile, invoking the Defense Production Act at an early stage, and rapid review and authorization by FDA/EPA/OSHA of non-U.S. approved products. Recommendations are also provided for mitigating shortages of diagnostic testing, medications and medical equipment.

4.
Infect Control Hosp Epidemiol ; : 1-5, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38835230

RESUMO

The Society for Healthcare Epidemiology in America (SHEA) strongly supports modernization of data collection processes and the creation of publicly available data repositories that include a wide variety of data elements and mechanisms for securely storing both cleaned and uncleaned data sets that can be curated as clinical and research needs arise. These elements can be used for clinical research and quality monitoring and to evaluate the impacts of different policies on different outcomes. Achieving these goals will require dedicated, sustained and long-term funding to support data science teams and the creation of central data repositories that include data sets that can be "linked" via a variety of different mechanisms and also data sets that include institutional and state and local policies and procedures. A team-based approach to data science is strongly encouraged and supported to achieve the goal of a sustainable, adaptable national shared data resource.

6.
Emerg Infect Dis ; 30(6): 1104-1114, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38781979
7.
Am J Infect Control ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38692307

RESUMO

BACKGROUND: Understanding the epidemiology of carbapenem-resistant A. baumannii complex (CRAB) and the patients impacted is an important step toward informing better infection prevention and control practices and improving public health response. METHODS: Active, population-based surveillance was conducted for CRAB in 9 U.S. sites from January 1 to December 31, 2019. Medical records were reviewed, isolates were collected and characterized including antimicrobial susceptibility testing and whole genome sequencing. RESULTS: Among 136 incident cases in 2019, 66 isolates were collected and characterized; 56.5% were from cases who were male, 54.5% were from persons of Black or African American race with non-Hispanic ethnicity, and the median age was 63.5 years. Most isolates, 77.2%, were isolated from urine, and 50.0% were collected in the outpatient setting; 72.7% of isolates harbored an acquired carbapenemase gene (aCP), predominantly blaOXA-23 or blaOXA-24/40; however, an isolate with blaNDM was identified. The antimicrobial agent with the most in vitro activity was cefiderocol (96.9% of isolates were susceptible). CONCLUSIONS: Our surveillance found that CRAB isolates in the U.S. commonly harbor an aCP, have an antimicrobial susceptibility profile that is defined as difficult-to-treat resistance, and epidemiologically are similar regardless of the presence of an aCP.

8.
Infect Control Hosp Epidemiol ; : 1-9, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770586

RESUMO

BACKGROUND: Understanding characteristics of healthcare personnel (HCP) with SARS-CoV-2 infection supports the development and prioritization of interventions to protect this important workforce. We report detailed characteristics of HCP who tested positive for SARS-CoV-2 from April 20, 2020 through December 31, 2021. METHODS: CDC collaborated with Emerging Infections Program sites in 10 states to interview HCP with SARS-CoV-2 infection (case-HCP) about their demographics, underlying medical conditions, healthcare roles, exposures, personal protective equipment (PPE) use, and COVID-19 vaccination status. We grouped case-HCP by healthcare role. To describe residential social vulnerability, we merged geocoded HCP residential addresses with CDC/ATSDR Social Vulnerability Index (SVI) values at the census tract level. We defined highest and lowest SVI quartiles as high and low social vulnerability, respectively. RESULTS: Our analysis included 7,531 case-HCP. Most case-HCP with roles as certified nursing assistant (CNA) (444, 61.3%), medical assistant (252, 65.3%), or home healthcare worker (HHW) (225, 59.5%) reported their race and ethnicity as either non-Hispanic Black or Hispanic. More than one third of HHWs (166, 45.2%), CNAs (283, 41.7%), and medical assistants (138, 37.9%) reported a residential address in the high social vulnerability category. The proportion of case-HCP who reported using recommended PPE at all times when caring for patients with COVID-19 was lowest among HHWs compared with other roles. CONCLUSIONS: To mitigate SARS-CoV-2 infection risk in healthcare settings, infection prevention, and control interventions should be specific to HCP roles and educational backgrounds. Additional interventions are needed to address high social vulnerability among HHWs, CNAs, and medical assistants.

9.
Open Forum Infect Dis ; 11(4): ofae127, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38577028

RESUMO

Background: Because interventions are available to prevent further recurrence in patients with recurrent Clostridioides difficile infection (rCDI), we identified predictors of multiple rCDI (mrCDI) in adults at the time of presentation with initial CDI (iCDI). Methods: iCDI was defined as a positive C difficile test in any clinical setting during January 2018-August 2019 in a person aged ≥18 years with no known prior positive test. rCDI was defined as a positive test ≥14 days from the previous positive test within 180 days after iCDI; mrCDI was defined as ≥2 rCDI. We performed multivariable logistic regression analysis. Results: Of 18 829 patients with iCDI, 882 (4.7%) had mrCDI; 437 with mrCDI and 7484 without mrCDI had full chart reviews. A higher proportion of patients with mrCDI than without mrCDI were aged ≥65 years (57.2% vs 40.7%; P < .0001) and had healthcare (59.1% vs 46.9%; P < .0001) and antibiotic (77.3% vs 67.3%; P < .0001) exposures in the 12 weeks preceding iCDI. In multivariable analysis, age ≥65 years (adjusted odds ratio [aOR], 1.91; 95% confidence interval [CI], 1.55-2.35), chronic hemodialysis (aOR, 2.28; 95% CI, 1.48-3.51), hospitalization (aOR, 1.64; 95% CI, 1.33-2.01), and nitrofurantoin use (aOR, 1.95; 95% CI, 1.18-3.23) in the 12 weeks preceding iCDI were associated with mrCDI. Conclusions: Patients with iCDI who are older, on hemodialysis, or had recent hospitalization or nitrofurantoin use had increased risk of mrCDI and may benefit from early use of adjunctive therapy to prevent mrCDI. If confirmed, these findings could aid in clinical decision making and interventional study designs.

10.
Vaccine ; 42(10): 2585-2591, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38480100

RESUMO

OBJECTIVE: Identify characteristics of healthcare personnel (HCP) who did not have timely initiation of the COVID-19 primary series, as well as HCP who did not receive a booster vaccine. METHODS: Characteristics of HCP enrolled in a COVID-19 vaccine effectiveness study between 12/28/2020-12/01/2022 were compared by timing of receipt of 1st mRNA dose, and by receipt of a booster dose. Data for this retrospective cohort analysis came from HCP working at a large healthcare system in Monroe County, New York, and included standardized questionnaires and verified vaccination status. HCP were categorized by whether they received their 1stmRNA COVID-19 vaccine between 12/14/2020-03/30/2021 (earlier) or 04/01/2021-09/28/2021 (later) based on timing of local vaccine eligibility and mandates, and by whether they received a 3rdmRNA booster dose by 12/01/22. Logistic regression models were run to identify characteristics of HCP who had later 1stdose receipt or did not receive a booster. RESULTS: 3,375 HCP were enrolled. Of these, 86.8 % had early initiation of their 1stCOVID-19 vaccine, and 85.0 % received a booster dose. Low education, low household income, younger age (<50), non-White race and public health insurance were all significant predictors of later receipt of 1stdose and lack of uptake of a booster. However, advanced professional role was only found to be a significant predictor of early 1stdose receipt. CONCLUSIONS: Continual monitoring of COVID-19 vaccine uptake among HCP to identify those less likely to receive new booster doses will be crucial to support targeted vaccine campaigns in this important population.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , New York , Estudos Retrospectivos , COVID-19/prevenção & controle , Cognição , Vacinação
11.
Infect Control Hosp Epidemiol ; 45(1): 82-88, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37462106

RESUMO

OBJECTIVE: To characterize residential social vulnerability among healthcare personnel (HCP) and evaluate its association with severe acute respiratory coronavirus virus 2 (SARS-CoV-2) infection. DESIGN: Case-control study. SETTING: This study analyzed data collected in May-December 2020 through sentinel and population-based surveillance in healthcare facilities in Colorado, Minnesota, New Mexico, New York, and Oregon. PARTICIPANTS: Data from 2,168 HCP (1,571 cases and 597 controls from the same facilities) were analyzed. METHODS: HCP residential addresses were linked to the social vulnerability index (SVI) at the census tract level, which represents a ranking of community vulnerability to emergencies based on 15 US Census variables. The primary outcome was SARS-CoV-2 infection, confirmed by positive antigen or real-time reverse-transcriptase- polymerase chain reaction (RT-PCR) test on nasopharyngeal swab. Significant differences by SVI in participant characteristics were assessed using the Fisher exact test. Adjusted odds ratios (aOR) with 95% confidence intervals (CIs) for associations between case status and SVI, controlling for HCP role and patient care activities, were estimated using logistic regression. RESULTS: Significantly higher proportions of certified nursing assistants (48.0%) and medical assistants (44.1%) resided in high SVI census tracts, compared to registered nurses (15.9%) and physicians (11.6%). HCP cases were more likely than controls to live in high SVI census tracts (aOR, 1.76; 95% CI, 1.37-2.26). CONCLUSIONS: These findings suggest that residing in more socially vulnerable census tracts may be associated with SARS-CoV-2 infection risk among HCP and that residential vulnerability differs by HCP role. Efforts to safeguard the US healthcare workforce and advance health equity should address the social determinants that drive racial, ethnic, and socioeconomic health disparities.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Estudos de Casos e Controles , Vulnerabilidade Social , Atenção à Saúde
12.
Vaccine ; 42(10): 2543-2552, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37973512

RESUMO

BACKGROUND: Bivalent mRNA vaccines were recommended since September 2022. However, coverage with a recent vaccine dose has been limited, and there are few robust estimates of bivalent VE against symptomatic SARS-CoV-2 infection (COVID-19). We estimated VE of a bivalent mRNA vaccine dose against COVID-19 among eligible U.S. healthcare personnel who had previously received monovalent mRNA vaccine doses. METHODS: We conducted a case-control study in 22 U.S. states, and enrolled healthcare personnel with COVID-19 (case-participants) or without COVID-19 (control-participants) during September 2022-May 2023. Participants were considered eligible for a bivalent mRNA dose if they had received 2-4 monovalent (ancestral-strain) mRNA vaccine doses, and were ≥67 days after the most recent vaccine dose. We estimated VE of a bivalent mRNA dose using conditional logistic regression, accounting for matching by region and four-week calendar period. We adjusted estimates for age group, sex, race and ethnicity, educational level, underlying health conditions, community COVID-19 exposure, prior SARS-CoV-2 infection, and days since the last monovalent mRNA dose. RESULTS: Among 3,647 healthcare personnel, 1,528 were included as case-participants and 2,119 as control-participants. Participants received their last monovalent mRNA dose a median of 404 days previously; 1,234 (33.8%) also received a bivalent mRNA dose a median of 93 days previously. Overall, VE of a bivalent dose was 34.1% (95% CI, 22.6%-43.9%) against COVID-19 and was similar by product, days since last monovalent dose, number of prior doses, age group, and presence of underlying health conditions. However, VE declined from 54.8% (95% CI, 40.7%-65.6%) after 7-59 days to 21.6% (95% CI 5.6%-34.9%) after ≥60 days. CONCLUSIONS: Bivalent mRNA COVID-19 vaccines initially conferred approximately 55% protection against COVID-19 among U.S. healthcare personnel. However, protection waned after two months. These findings indicate moderate initial protection against symptomatic SARS-CoV-2 infection by remaining up-to-date with COVID-19 vaccines.


Assuntos
COVID-19 , Humanos , Recém-Nascido , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Vacinas Combinadas , Vacinas de mRNA , Estudos de Casos e Controles , SARS-CoV-2 , RNA Mensageiro , Atenção à Saúde
13.
Open Forum Infect Dis ; 10(12): ofad609, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38130598

RESUMO

Background: We described changes in 2016─2020 carbapenem-resistant Enterobacterales (CRE) incidence rates in 7 US sites that conduct population-based CRE surveillance. Methods: An incident CRE case was defined as the first isolation of Escherichia coli, Klebsiella spp., or Enterobacter spp. resistant to ≥1 carbapenem from a sterile site or urine in a surveillance area resident in a 30-day period. We reviewed medical records and classified cases as hospital-onset (HO), healthcare-associated community-onset (HACO), or community-associated (CA) CRE based on healthcare exposures and location of disease onset. We calculated incidence rates using census data. We used Poisson mixed effects regression models to perform 2016─2020 trend analyses, adjusting for sex, race/ethnicity, and age. We compared adjusted incidence rates between 2016 and subsequent years using incidence rate ratios (RRs) and 95% confidence intervals (CIs). Results: Of 4996 CRE cases, 62% were HACO, 21% CA, and 14% HO. The crude CRE incidence rate per 100 000 was 7.51 in 2016 and 6.08 in 2020 and was highest for HACO, followed by CA and HO. From 2016 to 2020, the adjusted overall CRE incidence rate decreased by 24% (RR, 0.76 [95% CI, .70-.83]). Significant decreases in incidence rates in 2020 were seen for HACO (RR, 0.75 [95% CI, .67-.84]) and CA (0.75 [.61-.92]) but not for HO CRE. Conclusions: Adjusted CRE incidence rates declined from 2016 to 2020, but changes over time varied by epidemiologic class. Continued surveillance and effective control strategies are needed to prevent CRE in all settings.

14.
Open Forum Infect Dis ; 10(10): ofad457, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37799130

RESUMO

Background: Protection against symptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (coronavirus disease 2019 [COVID-19]) can limit transmission and the risk of post-COVID conditions, and is particularly important among healthcare personnel. However, lower vaccine effectiveness (VE) has been reported since predominance of the Omicron SARS-CoV-2 variant. Methods: We evaluated the VE of a monovalent messenger RNA (mRNA) booster dose against COVID-19 from October 2021 to June 2022 among US healthcare personnel. After matching case-participants with COVID-19 to control-participants by 2-week period and site, we used conditional logistic regression to estimate the VE of a booster dose compared with completing only 2 mRNA doses >150 days previously, adjusted for multiple covariates. Results: Among 3279 case-participants and 3998 control-participants who had completed 2 mRNA doses, we estimated that the VE of a booster dose against COVID-19 declined from 86% (95% confidence interval, 81%-90%) during Delta predominance to 65% (58%-70%) during Omicron predominance. During Omicron predominance, VE declined from 73% (95% confidence interval, 67%-79%) 14-60 days after the booster dose, to 32% (4%-52%) ≥120 days after a booster dose. We found that VE was similar by age group, presence of underlying health conditions, and pregnancy status on the test date, as well as among immunocompromised participants. Conclusions: A booster dose conferred substantial protection against COVID-19 among healthcare personnel. However, VE was lower during Omicron predominance, and waning effectiveness was observed 4 months after booster dose receipt during this period. Our findings support recommendations to stay up to date on recommended doses of COVID-19 vaccines for all those eligible.

15.
Am J Transplant ; 23(5): 676-681, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37130620

RESUMO

INTRODUCTION: Racial and ethnic minorities are disproportionately affected by end-stage kidney disease (ESKD). ESKD patients on dialysis are at increased risk for Staphylococcus aureus bloodstream infections, but racial, ethnic, and socioeconomic disparities associated with this outcome are not well described. METHODS: Surveillance data from the 2020 National Healthcare Safety Network (NHSN) and the 2017-2020 Emerging Infections Program (EIP) were used to describe bloodstream infections among patients on hemodialysis (hemodialysis patients) and were linked to population-based data sources (CDC/Agency for Toxic Substances and Disease Registry [ATSDR] Social Vulnerability Index [SVI], United States Renal Data System [USRDS], and U.S. Census Bureau) to examine associations with race, ethnicity, and social determinants of health. RESULTS: In 2020, 4,840 dialysis facilities reported 14,822 bloodstream infections to NHSN; 34.2% were attributable to S. aureus . Among seven EIP sites, the S. aureus bloodstream infection rate during 2017-2020 was 100 times higher among hemodialysis patients (4,248 of 100,000 person-years) than among adults not on hemodialysis (42 of 100,000 person-years). Unadjusted S. aureus bloodstream infection rates were highest among non-Hispanic Black or African American (Black) and Hispanic or Latino (Hispanic) hemodialysis patients. Vascular access via central venous catheter was strongly associated with S. aureus bloodstream infections (NHSN: adjusted rate ratio [aRR] = 6.2; 95% CI = 5.7-6.7 versus fistula; EIP: aRR = 4.3; 95% CI = 3.9-4.8 versus fistula or graft). Adjusting for EIP site of residence, sex, and vascular access type, S. aureus bloodstream infection risk in EIP was highest in Hispanic patients (aRR = 1.4; 95% CI = 1.2-1.7 versus non-Hispanic White [White] patients), and patients aged 18-49 years (aRR = 1.7; 95% CI = 1.5-1.9 versus patients aged ≥65 years). Areas with higher poverty levels, crowding, and lower education levels accounted for disproportionately higher proportions of hemodialysis-associated S. aureus bloodstream infections. CONCLUSIONS AND IMPLICATIONS FOR PUBLIC HEALTH PRACTICE: Disparities exist in hemodialysis-associated S. aureus infections. Health care providers and public health professionals should prioritize prevention and optimized treatment of ESKD, identify and address barriers to lower-risk vascular access placement, and implement established best practices to prevent bloodstream infections.


Assuntos
Falência Renal Crônica , Sepse , Adulto , Humanos , Estados Unidos/epidemiologia , Staphylococcus aureus , Diálise Renal/efeitos adversos , Etnicidade , Falência Renal Crônica/terapia , Falência Renal Crônica/etiologia , Sepse/etiologia , Sinais Vitais , Disparidades em Assistência à Saúde
16.
Open Forum Infect Dis ; 10(5): ofad218, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37187509

RESUMO

Background: Most multicenter studies of US pediatric sepsis epidemiology use administrative data or focus on pediatric intensive care units. We conducted a detailed medical record review to describe sepsis epidemiology in children and young adults. Methods: In a convenience sample of hospitals in 10 states, patients aged 30 days-21 years, discharged during 1 October 2014-30 September 2015, with explicit diagnosis codes for severe sepsis or septic shock, were included. Medical records were reviewed for patients with documentation of sepsis, septic shock, or similar terms. We analyzed overall and age group-specific patient characteristics. Results: Of 736 patients in 26 hospitals, 442 (60.1%) had underlying conditions. Most patients (613 [83.3%]) had community-onset sepsis, although most community-onset sepsis was healthcare associated (344 [56.1%]). Two hundred forty-one patients (32.7%) had outpatient visits 1-7 days before sepsis hospitalization, of whom 125 (51.9%) received antimicrobials ≤30 days before sepsis hospitalization. Age group-related differences included common underlying conditions (<5 years: prematurity vs 5-12 years: chronic pulmonary disease vs 13-21 years: chronic immunocompromise); medical device presence ≤30 days before sepsis hospitalization (1-4 years: 46.9% vs 30 days-11 months: 23.3%); percentage with hospital-onset sepsis (<5 years: 19.6% vs ≥5 years: 12.0%); and percentage with sepsis-associated pathogens (30 days-11 months: 65.6% vs 13-21 years: 49.3%). Conclusions: Our data suggest potential opportunities to raise sepsis awareness among outpatient providers to facilitate prevention, early recognition, and intervention in some patients. Consideration of age-specific differences may be important as approaches are developed to improve sepsis prevention, risk prediction, recognition, and management.

18.
Clin Infect Dis ; 77(4): 629-637, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37083882

RESUMO

BACKGROUND: Nontuberculous mycobacteria (NTM) cause pulmonary (PNTM) and extrapulmonary (ENTM) disease. Infections are difficult to diagnose and treat, and exposures occur in healthcare and community settings. In the United States, NTM epidemiology has been described largely through analyses of microbiology data from health departments, electronic health records, and administrative data. We describe findings from a multisite pilot of active, laboratory- and population-based NTM surveillance. METHODS: The Centers for Disease Control and Prevention's Emerging Infections Program conducted NTM surveillance at 4 sites (Colorado, 5 counties; Minnesota, 2 counties; New York, 2 counties; and Oregon, 3 counties [PNTM] and statewide [ENTM]) from 1 October 2019 through 31 March 2020. PNTM cases were defined using published microbiologic criteria. ENTM cases required NTM isolation from a nonpulmonary specimen, excluding stool and rectal swabs. Patient data were collected via medical record review. RESULTS: Overall, 299 NTM cases were reported (PNTM: 231, 77%); Mycobacterium avium complex was the most common species group. Annualized prevalence was 7.5/100 000 population (PNTM: 6.1/100 000; ENTM: 1.4/100 000). Most patients had signs or symptoms in the 14 days before positive specimen collection (ENTM: 62, 91.2%; PNTM: 201, 87.0%). Of PNTM cases, 145 (62.8%) were female and 168 (72.7%) had underlying chronic lung disease. Among ENTM cases, 29 (42.6%) were female, 21 (30.9%) did not have documented underlying conditions, and 26 (38.2%) had infection at the site of a medical device or procedure. CONCLUSIONS: Active, population-based NTM surveillance will provide data for monitoring the burden of disease and characterize affected populations to inform interventions.


Assuntos
Pneumopatias , Infecções por Mycobacterium não Tuberculosas , Humanos , Feminino , Masculino , Infecções por Mycobacterium não Tuberculosas/microbiologia , Micobactérias não Tuberculosas , Pulmão/microbiologia , Pneumopatias/epidemiologia , Pneumopatias/microbiologia , Oregon/epidemiologia
19.
J Am Med Dir Assoc ; 24(5): 735.e1-735.e9, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36996876

RESUMO

OBJECTIVES: The Centers for Disease Control and Prevention (CDC) recommends implementing Enhanced Barrier Precautions (EBP) for all nursing home (NH) residents known to be colonized with targeted multidrug-resistant organisms (MDROs), wounds, or medical devices. Differences in health care personnel (HCP) and resident interactions between units may affect risk of acquiring and transmitting MDROs, affecting EBP implementation. We studied HCP-resident interactions across a variety of NHs to characterize MDRO transmission opportunities. DESIGN: 2 cross-sectional visits. SETTING AND PARTICIPANTS: Four CDC Epicenter sites and CDC Emerging Infection Program sites in 7 states recruited NHs with a mix of unit care types (≥30 beds or ≥2 units). HCP were observed providing resident care. METHODS: Room-based observations and HCP interviews assessed HCP-resident interactions, care type provided, and equipment use. Observations and interviews were conducted for 7-8 hours in 3-6-month intervals per unit. Chart reviews collected deidentified resident demographics and MDRO risk factors (eg, indwelling devices, pressure injuries, and antibiotic use). RESULTS: We recruited 25 NHs (49 units) with no loss to follow-up, conducted 2540 room-based observations (total duration: 405 hours), and 924 HCP interviews. HCP averaged 2.5 interactions per resident per hour (long-term care units) to 3.4 per resident per hour (ventilator care units). Nurses provided care to more residents (n = 12) than certified nursing assistants (CNAs) and respiratory therapists (RTs) (CNA: 9.8 and RT: 9) but nurses performed significantly fewer task types per interaction compared to CNAs (incidence rate ratio (IRR): 0.61, P < .05). Short-stay (IRR: 0.89) and ventilator-capable (IRR: 0.94) units had less varied care compared with long-term care units (P < .05), although HCP visited residents in these units at similar rates. CONCLUSIONS AND IMPLICATIONS: Resident-HCP interaction rates are similar across NH unit types, differing primarily in types of care provided. Current and future interventions such as EBP, care bundling, or targeted infection prevention education should consider unit-specific HCP-resident interaction patterns.


Assuntos
Controle de Infecções , Casas de Saúde , Humanos , Estudos Transversais , Pessoal de Saúde , Antibacterianos
20.
Infect Dis Clin North Am ; 37(1): 65-86, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36805015

RESUMO

Health care-associated infections (HAIs) are a global public health threat, which disproportionately impact older adults. Host factors including aging-related changes, comorbidities, and geriatric syndromes, such as dementia and frailty, predispose older individuals to infection. The HAI risks from medical interventions such as device use, antibiotic use, and lapses in infection control follow older adults as they transfer among a network of interrelated acute and long-term care facilities. Long-term care facilities are caring for patients with increasingly complex needs, and the home-like communal environment of long-term care facilities creates distinct infection prevention challenges.


Assuntos
Infecções Relacionadas a Cateter , Infecção Hospitalar , Infecções Urinárias , Humanos , Idoso , Infecções Relacionadas a Cateter/prevenção & controle , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/prevenção & controle , Controle de Infecções , Instalações de Saúde , Atenção à Saúde , Infecções Urinárias/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA