Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
J Agric Food Chem ; 72(12): 6315-6326, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38470442

RESUMO

Eco-friendly bioherbicides are urgently needed for managing the problematic weed Amaranthus retroflexus. A mass spectrometry- and bioassay-guided screening approach was employed to identify phytotoxic secondary metabolites from fungi for the development of such bioherbicides. This effort led to the discovery of six phytotoxic 16-residue peptaibols, including five new compounds (2-6) and a known congener (1), from Emericellopsis sp. XJ1056. Their planar structures were elucidated through the analysis of tandem mass and NMR spectroscopic data. The absolute configurations of the chiral amino acids were determined by advanced Marfey's method and chiral-phase liquid chromatography-mass spectrometry (LC-MS) analysis. Bioinformatic analysis and targeted gene disruption identified the biosynthetic gene cluster for these peptaibols. Compounds 1 and 2 significantly inhibited the radicle growth of A. retroflexus seedlings, and 1 demonstrated potent postemergence herbicidal activity against A. retroflexus while exhibiting minimal toxicity to Sorghum bicolor. Structure-activity relationship analysis underscored the importance of trans-4-hydroxy-l-prolines at both the 10th and 13th positions for the herbicidal activities of these peptaibols.


Assuntos
Herbicidas , Hypocreales , Peptaibols/química , Peptaibols/farmacologia , Herbicidas/farmacologia , Aminoácidos/metabolismo , Espectrometria de Massas , Hypocreales/metabolismo
3.
J Nat Prod ; 86(12): 2621-2629, 2023 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-37984868

RESUMO

Six new squalene derived polyether glycosides, onygenaleosides A-F (1-6), that possess a 6/5 bicyclic fused ring skeleton were isolated from the cultures of Onygenales sp. YX1425, along with two known analogues (7 and 8). The planar structures of the new compounds were elucidated based on analysis of NMR and MS spectroscopy data, and the absolute configuration of 1 was determined by the advanced Mosher method and quantum chemical calculations. Compound 2 was active against Spodoptera frugiperda with an LC50 value of 193.4 ± 1.1 µg/mL.


Assuntos
Inseticidas , Triterpenos , Glicosídeos/farmacologia , Glicosídeos/química , Triterpenos/farmacologia , Triterpenos/química , Inseticidas/farmacologia , Espectroscopia de Ressonância Magnética/métodos , Esqueleto , Estrutura Molecular
4.
J Nat Prod ; 86(5): 1240-1250, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37145877

RESUMO

Mass spectrometry-based dereplication and prioritization led to the discovery of four multi-N-methylated cyclodecapeptides, auyuittuqamides E-H (1-4), from a soil-derived Sesquicillium sp. The planar structures of these compounds were elucidated based on analysis of HRESIMS and NMR data. Absolute configurations of the chiral amino acid residues were assigned by a combination of the advanced Marfey's method, chiral-phase LC-MS analysis, and J-based configuration analysis, revealing that 1-4 contain both d- and l-isomers of N-methylleucine (MeLeu). Differentiation of d- and l-MeLeu in the sequence was achieved by advanced Marfey's analysis of the diagnostic peptide fragments generated from partial hydrolysis of 1. Bioinformatic analysis identified a putative biosynthetic gene cluster (auy) for auyuittuqamides E-H, and a plausible biosynthetic pathway was proposed. These newly identified fungal cyclodecapeptides (1-4) displayed in vitro growth inhibitory activity against vancomycin-resistant Enterococcus faecium with MIC values of 8 µg/mL.


Assuntos
Aminoácidos , Fragmentos de Peptídeos , Aminoácidos/química , Cromatografia Líquida , Espectrometria de Massas , Estrutura Molecular , Peptídeos Cíclicos/análise , Peptídeos Cíclicos/química
5.
Front Nutr ; 9: 946736, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967821

RESUMO

Two water-extractable polysaccharide fractions designated as CWP (7. 37 × 105 Da) and CWP-0.2 (1.58 × 104 Da) were isolated and purified from chickpea (Cicer arietinum L.) seeds. The chemical structure of the two polysaccharides was characterized by various methods. Monosaccharide composition and methylation analysis showed that CWP was composed of Man and Glc in a molar ratio of 44.6:55.4, and CWP-0.2 was composed of Rha, Ara, Man, Glc, and Gal in a molar ratio of 10.6:23.3:5.2:4.9:56. Further structural characterization indicated that the main chain connection of CWP was → (2-ß-d-Fruf-1) n →, and the main chain connection of CWP-0.2 was explored as → 2,4)-α-l-Rhap-(1 → 3)-α-d-Galp-(1 → with the branched chain of → 2,4)-α-l-Rhap-(1 → o-4. Besides, both CWP and CWP-0.2 had antioxidant and immunoregulatory activity in vitro, through scavenging DPPH· and ABTS·+ as well as stimulating production of NO, IL-6, TNF-α and MCP-1 in RAW 264.7 macrophages. CWP-0.2 revealed significantly higher bioactivity than CWP.

6.
Proc Natl Acad Sci U S A ; 119(32): e2123379119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914151

RESUMO

Xylomyrocins, a unique group of nonribosomal peptide secondary metabolites, were discovered in Paramyrothecium and Colletotrichum spp. fungi by employing a combination of high-resolution tandem mass spectrometry (HRMS/MS)-based chemometrics, comparative genome mining, gene disruption, stable isotope feeding, and chemical complementation techniques. These polyol cyclodepsipeptides all feature an unprecedented d-xylonic acid moiety as part of their macrocyclic scaffold. This biosynthon is derived from d-xylose supplied by xylooligosaccharide catabolic enzymes encoded in the xylomyrocin biosynthetic gene cluster, revealing a novel link between carbohydrate catabolism and nonribosomal peptide biosynthesis. Xylomyrocins from different fungal isolates differ in the number and nature of their amino acid building blocks that are nevertheless incorporated by orthologous nonribosomal peptide synthetase (NRPS) enzymes. Another source of structural diversity is the variable choice of the nucleophile for intramolecular macrocyclic ester formation during xylomyrocin chain termination. This nucleophile is selected from the multiple available alcohol functionalities of the polyol moiety, revealing a surprising polyspecificity for the NRPS terminal condensation domain. Some xylomyrocin congeners also feature N-methylated amino acid residues in positions where the corresponding NRPS modules lack N-methyltransferase (M) domains, providing a rare example of promiscuous methylation in the context of an NRPS with an otherwise canonical, collinear biosynthetic program.


Assuntos
Depsipeptídeos , Proteínas Fúngicas , Fungos , Aminoácidos/química , Metabolismo dos Carboidratos , Quimiometria , Depsipeptídeos/química , Depsipeptídeos/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Fungos/genética , Fungos/metabolismo , Família Multigênica , Biossíntese de Peptídeos Independentes de Ácido Nucleico , Peptídeo Sintases/química , Açúcares
7.
Front Nutr ; 8: 774203, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34926551

RESUMO

Dietary intervention with plant protein is one of the main methods that is used to lessen the symptoms of malnutrition. Supplementary soy protein to undernourished weaning rats for 6 weeks significantly increased their body weight gain. After the intervention, the level of total short-chain fatty acids (SCFAs) was restored to 1,512.7 µg/g, while the level was only 637.1 µg/g in the 7% protein group. The amino acids (valine, isoleucine, phenylalanine, and tryptophan) increased in the colon, and vitamin B6 metabolism was significantly influenced in undernourished rats. The tryptophan and glycine-serine-threonine pathways were elevated, leading to an increase in the level of tryptophan and 5-hydroxytryptophan (5-HTP) in the serum. In addition, the relative abundance of Lachnospiraceae_NK4A136_group and Lactobacillus increased, while Enterococcus and Streptococcus decreased compared to undernourished rats. Overall, soy protein improved the growth of rats with malnutrition in early life by regulating gut microbiota and metabolites in the colon and serum.

8.
Planta ; 255(1): 13, 2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34862923

RESUMO

MAIN CONCLUSION: The sorghum soluble acid invertase gene SbSAI-2 was cloned and the function verified in Pichia pastoris and rice, showing the SbSAI-2 affects composition and content of sugar in stem juice. Sugar metabolism is one of the most important metabolic processes in plants, in which soluble acid invertase plays a key role. However, the structure and function of the soluble acid transferase gene in sorghum are still fully unclear. In this study, SbSAI-2 was cloned from the sorghum variety BTx623, and two transcripts were found through sequence analysis, with only one transcript translated into an active protein. There is 72% homology between SbSAI-2 and OsVIN2. The construction of Osvin2 mutant lines and SbSAI-2-1 overexpression lines in Oryza sativa L. japonica. cv. Nipponbare were produced to clarify the invertase functionality. While the invertase activity in the stem of the Osvin2 mutant line was reduced, with no significant difference (P > 0.05), and the contents of fructose and glucose in stem tissue did not change significantly (P > 0.05), and the content of sucrose increased by 38.89% (P < 0.01). In SbSAI-2-1 overexpression lines, the invertase activity in stem was increased by more than 20 times (P < 0.01). The contents of glucose and fructose in stem tissues were increased by two and three times, respectively (P < 0.01), while the content of sucrose was significantly decreased, which was below the detection limit (P < 0.01). This study indicated that SbSAI-2 is a key enzyme related to sucrose metabolism and affects the composition and content of sugar in stems. The result provided further the gene function verification and laid a foundation for the development of molecular markers.


Assuntos
Oryza , Sorghum , Clonagem Molecular , Grão Comestível , Oryza/genética , Sorghum/genética , Sacarose , beta-Frutofuranosidase/genética
9.
Foods ; 10(12)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34945593

RESUMO

The starch digestion processing of whole grain foods is associated with its health benefits in improving insulin resistance. This study modified the digestibility of whole quinoa flour (WQ) via heat-moisture treatment (HMT), HMT combined with pullulanase (HMT+P), HMT combined with microwave (HMT+M), and HMT combined with citric acids (HMT+A), respectively. Results showed that all the treatments significantly increased (p < 0.05) the total dietary fiber (TDF) content, amylose content, and resistant starch (RS) content, however, significantly decreased (p < 0.05) the amylopectin content and rapidly digestible starch (RDS) content of WQ. HMT+P brought the highest TDF content (15.3%), amylose content (31.24%), and RS content (15.71%), and the lowest amylopecyin content (30.02%) and RDS content (23.65%). HMT+M brought the highest slowly digestible starch (SDS) content (25.09%). The estimated glycemic index (eGI) was respectively reduced from 74.36 to 70.59, 65.87, 69.79, and 69.12 by HMT, HMT+P, HMT+M, and HMT+A. Moreover, a significant and consistent reduction in the heat enthalpy (ΔH) of WQ was observed (p < 0.05), after four treatments. All these effects were caused by changes in the starch structure, as evidenced by the observed conjunction of protein and starch by a confocal laser scanning microscope (CLSM), the decrease in relative crystallinity, and transformation of starch crystal.

10.
World J Microbiol Biotechnol ; 38(1): 1, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34817662

RESUMO

Beauvericin and bassiatin are two valuable compounds with various bioactivities biosynthesized by the supposedly same nonribosomal peptide synthetase BbBEAS in entomopathogenic fungus Beauveria bassiana. To evaluate the regulatory effect of global regulator LaeA on their production, we constructed BbLaeA gene deletion and overexpression mutants, respectively. Deletion of BbLaeA resulted in a decrease of the beauvericin titer, while overexpression of BbLaeA increased its production by 1-2.26 times. No bassiatin could be detected in ΔBbLaeA and wild type strain of B. bassiana, but 4.26-5.10 µg/mL bassiatin was produced in OE::BbLaeA. Furthermore, additional metabolites with increased production in OE::BbLaeA were isolated and identified as primary metabolites. Among them, 4-hydroxyphenylacetic acid showed antibacterial bioactivity against Ralstonia solanacearum. These results indicated that BbLaeA positively regulates the production of beauvericin, bassiatin and various bioactive primary metabolites.


Assuntos
Beauveria/crescimento & desenvolvimento , Depsipeptídeos/biossíntese , Proteínas Fúngicas/genética , Morfolinas/metabolismo , Beauveria/genética , Beauveria/metabolismo , Proteínas Fúngicas/metabolismo , Deleção de Genes , Fenilacetatos/metabolismo , Fenilacetatos/farmacologia , Ralstonia solanacearum/efeitos dos fármacos , Ralstonia solanacearum/crescimento & desenvolvimento
11.
Foods ; 10(10)2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34681416

RESUMO

Coarse cereals are rich in flavonoids, which are bioactive substances with a wide range of functions. Biotransformation is considered an emerging approach to methylate flavonoids, displaying prominent regio- and stereoselectivity. In the current study, liquiritigenin, naringenin, and hesperidin flavonoids were biotransformed using O-methyltransferases that were heterologously expressed in Saccharomyces cerevisiae BJ5464-NpgA. Nuclear magnetic resonance (NMR) spectroscopy was used together with high-resolution mass spectroscopy analysis to determine the structures of the resulting methylated transformants, and their antimicrobial and antiproliferation activities were also characterized. Among the five methylated flavonoids obtained, 7-methoxy-liquiritigenin had the strongest inhibitory effect on Candida albicans SC5314 (C. albicans SC5314), Staphylococcus aureus ATCC6538 (S. aureus ATCC6538), and Escherichia coli ATCC25922 (E. coli ATCC25922), which increased 7.65-, 1.49-, and 0.54-fold in comparison to the values of their unmethylated counterparts at 200, 250, and 400 µM, respectively. The results suggest that 3'-methoxyhesperetin showed the best antiproliferative activity against MCF-7 cells with IC50 values of 10.45 ± 0.45 µM, which was an increase of more than 14.35-fold compared to that of hesperetin. These results indicate that methylation enhances the antimicrobial activities and antiproliferative effects of flavonoids. The current study provides an experimental basis for further research on flavonoids as well as flavonoid-containing crops in the development of antimicrobial and anti-breast cancer drugs in addition to supplementary and health foods. The biotransformation method is ideal, as it represents a means for the sustainable production of bioactive flavonoids.

12.
J Agric Food Chem ; 69(25): 7028-7036, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34138556

RESUMO

Increasing attention has been focused on plant-derived peptides because of their potential bioactivities. In this study, bioactive peptides were released from extruded adzuki bean protein by simulated gastrointestinal digestion. A peptide (KQS-1) sequenced as KQSESHFVDAQPEQQQR was separated and identified using ultrafiltration, pre-high-performance liquid chromatography (HPLC), and ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). KQS-1 was shown to exert significant anti-inflammatory effects in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages by reducing the production of IL-1, IL-6, TNF-α, and MCP-1 to 38.31, 6.07, 43.96, and 41.74%, respectively. The involved signaling pathways were identified by transcriptome analysis. Overall, 5236 differentially expressed genes (DEGs) were identified. Gene ontology (GO) functions demonstrated that DEGs were significantly related to the NF-κB pathway. In conclusion, KQS-1 prevented the activation and expression of NF-κB/caspase-1 by upstream and downstream factors. These findings highlight the bioactivity of adzuki bean peptides.


Assuntos
Vigna , Anti-Inflamatórios/farmacologia , Cromatografia Líquida , Digestão , Lipopolissacarídeos , NF-kappa B/genética , Peptídeos , Extratos Vegetais , Espectrometria de Massas em Tandem
13.
AMB Express ; 10(1): 118, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32613360

RESUMO

Herbicides are important tools for weed control in modern agriculture. In the search for potential herbicidal natural products from fungal species, harzianum A and B were identified from the biofertilizer fungus, Trichoderma brevicompactum. In the phytotoxicity assays on the dicot species Brassica chinensis, harzianum A and B reduced both shoot and root lengths at low concentrations and inhibited the seed germination at 2 µg mL-1. In addition, harzianum A and B also exhibited phytotoxicity against monocots, Oryza sativa L. cv. Nipponbare and Echinochloa crusgalli L. Beauv.. Compared with a common herbicide, 2,4-dichlorophenoxyacetic acid, harzianum A and B performed similar activity in a pot assay, and were more effective in post-emergence than pre-emergence conditions. Harzianum A and B have potential as efficient herbicide for controlling important dicotyledon and monocotyledon weeds at low concentrations. They can be sprayed in liquid form in both pre- and post-emergence conditions. Our results confirmed the importance of these molecules for the development of new herbicides.

14.
Molecules ; 24(6)2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30875913

RESUMO

Glycosylation is an efficient strategy to modulate the solubility, stability, bioavailability and bioactivity of drug-like natural products. Biological methods, such as whole-cell biocatalyst, promise a simple but highly effective approach to glycosylate biologically active small molecules with remarkable regio- and stereo-selectivity. Herein, we use the entomopathogenic filamentous fungus Isaria fumosorosea ACCC 37814 to biotransform a panel of phenolic natural products, including flavonoids and anthraquinone, into their glycosides. Six new flavonoid (4-O-methyl)glucopyranosides are obtained and structurally characterized using high resolution mass and nuclear magnetic resonance spectroscopic techniques. These compounds further expand the structural diversity of flavonoid glycosides and may be used in biological study.


Assuntos
Cordyceps/metabolismo , Flavonoides/metabolismo , Glicosídeos/metabolismo , Antraquinonas/química , Antraquinonas/metabolismo , Biotransformação , Flavonoides/química , Glicosídeos/química , Glicosilação , Metilação , Estrutura Molecular
15.
Food Chem ; 224: 124-130, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28159246

RESUMO

This study aimed to investigate the effects of different concentrations of sodium bicarbonate (NaHCO3) on the accumulation of flavonoids, total phenolics and d-chiro-inositol (DCI), as well as the antioxidant and α-glucosidase inhibitory activities, in tartary buckwheat sprouts. Treatment with low concentrations of NaHCO3 (0.05, 0.1, and 0.2%) resulted in an increase in flavonoids, total phenolic compounds and DCI concentrations, and improved DPPH radical-scavenging and α-glucosidase inhibition activities compared with the control (0%). The highest levels of total flavonoids (26.69mg/g DW), individual flavonoids (rutin, isoquercitrin, quercetin, and kaempferol), total phenolic compounds (29.31mg/g DW), DCI (12.56mg/g DW), as well as antioxidant and α-glucosidase inhibition activities, were observed in tartary buckwheat sprouts treated with 0.05% NaHCO3 for 96h. These results indicated that appropriate treatment with NaHCO3 could improve the healthy benefits of tartary buckwheat sprouts.


Assuntos
Antioxidantes/metabolismo , Fagopyrum/efeitos dos fármacos , Fagopyrum/metabolismo , Plântula/metabolismo , Bicarbonato de Sódio/farmacologia , alfa-Glucosidases/metabolismo , Animais , Antioxidantes/análise , Fagopyrum/química , Flavonoides/análise , Flavonoides/metabolismo , Fenóis/análise , Fenóis/metabolismo , Ratos , Rutina/análise , Rutina/metabolismo , alfa-Glucosidases/análise
16.
PLoS One ; 10(9): e0137485, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26360701

RESUMO

An endo-ß-1,4-glucanase gene, cel7A, was cloned from the thermophilic cellulase-producing fungus Neosartorya fischeri P1 and expressed in Pichia pastoris. The 1,410-bp full-length gene encodes a polypeptide of 469 amino acids consisting of a putative signal peptide at residues 1-20, a catalytic domain of glycoside hydrolase family 7 (GH7), a short Thr/Ser-rich linker and a family 1 carbohydrate-binding module (CBM 1). The purified recombinant Cel7A had pH and temperature optima of pH 5.0 and 60°C, respectively, and showed broad pH adaptability (pH 3.0-6.0) and excellent stability at pH3.0-8.0 and 60°C. Belonging to the group of nonspecific endoglucanases, Cel7A exhibited the highest activity on barley ß-glucan (2020 ± 9 U mg-1), moderate on lichenan and CMC-Na, and weak on laminarin, locust bean galactomannan, Avicel, and filter paper. Under simulated mashing conditions, addition of Cel7A (99 µg) reduced the mash viscosity by 9.1% and filtration time by 24.6%. These favorable enzymatic properties make Cel7A as a good candidate for applications in the brewing industry.


Assuntos
Celulase/metabolismo , Proteínas Fúngicas/metabolismo , Neosartorya/enzimologia , Celulase/química , Estabilidade Enzimática , Fermentação , Proteínas Fúngicas/química , Glucanos/metabolismo , Microbiologia Industrial/métodos , Especificidade por Substrato
17.
PLoS One ; 9(6): e99651, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24915192

RESUMO

The potential impact of transgene escape on the environment and food safety is a major concern to the scientists and public. This work aimed to assess the effect of intein-mediated gene splitting on containment of transgene flow. Two fusion genes, EPSPSn-In and Ic-EPSPSc, were constructed and integrated into N. tabacum, using Agrobacterium tumefaciens-mediated transformation. EPSPSn-In encodes the first 295 aa of the herbicide resistance gene 5-enolpyruvyl shikimate-3-phosphate synthase (EPSPS) fused with the first 123 aa of the Ssp DnaE intein (In), whereas Ic-EPSPSc encodes the 36 C-terminal aa of the Ssp DnaE intein (Ic) fused to the rest of EPSPS C terminus peptide sequences. Both EPSPSn-In and Ic-EPSPSc constructs were introduced into the same N. tabacum genome by genetic crossing. Hybrids displayed resistance to the herbicide N-(phosphonomethyl)-glycine (glyphosate). Western blot analysis of protein extracts from hybrid plants identified full-length EPSPS. Furthermore, all hybrid seeds germinated and grew normally on glyphosate selective medium. The 6-8 leaf hybrid plants showed tolerance of 2000 ppm glyphosate in field spraying. These results indicated that functional EPSPS protein was reassembled in vivo by intein-mediated trans-splicing in 100% of plants. In order to evaluate the effect of the gene splitting technique for containment of transgene flow, backcrossing experiments were carried out between hybrids, in which the foreign genes EPSPSn-In and Ic-EPSPSc were inserted into different chromosomes, and non-transgenic plants NC89. Among the 2812 backcrossing progeny, about 25% (664 plantlets) displayed glyphosate resistance. These data indicated that transgene flow could be reduced by 75%. Overall, our findings provide a new and highly effective approach for biological containment of transgene flow.


Assuntos
Técnicas Genéticas , Nicotiana/genética , Transgenes/genética , 3-Fosfoshikimato 1-Carboxiviniltransferase/genética , Western Blotting , Fluxo Gênico , Glicina/análogos & derivados , Glicina/toxicidade , Resistência a Herbicidas/genética , Homozigoto , Inteínas/genética , Peptídeos/metabolismo , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão/metabolismo , Nicotiana/crescimento & desenvolvimento , Trans-Splicing , Transformação Genética , Glifosato
18.
Sheng Wu Gong Cheng Xue Bao ; 26(7): 974-81, 2010 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-20954399

RESUMO

In order to explore the feasibility of planting sweet sorghum in sugarcane growing area to prolong milling duration for bioethanol production, 15 varieties were sown monthly from March to September in Liuzhou of Central Guangxi Zhuang Autonomous Region. Yields of fresh stem, grain and leave were documented. The results showed that all varieties grew well when sown from March to August, but could not get mature when sown after late September. The high fresh stem yields were observed for the varieties Sart and PT3-S, 79.28 t/hm2 and 78.58 t/hm2 for single growing season, and 157.95 t/hm2 and 155.25 t/hm2 for two growing seasons. Ripening began from the end of June to late December, making the feed stock available for ethanol production from July to the end of December, even January next year.


Assuntos
Agricultura/métodos , Etanol/metabolismo , Caules de Planta/metabolismo , Saccharum/crescimento & desenvolvimento , Sorghum/crescimento & desenvolvimento , China , Estudos de Viabilidade , Saccharum/metabolismo , Estações do Ano , Sorghum/metabolismo
19.
Appl Microbiol Biotechnol ; 77(5): 1175-80, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17973109

RESUMO

A two-intein purification system was developed for the affinity purification of GFPmut3*, a mutant of green fluorescent protein. The GFPmut3* was sandwiched between two self-cleaving inteins. This approach avoided the loss of the target protein which may result from in vivo cleavage of a single intein tag. The presence of N- and C-terminal chitin-binding domains allowed the affinity purification by a single-affinity chitin column. After the fusion protein was expressed and immobilized on the affinity column, self-cleavage of the inteins was sequentially induced to release the GFPmut3*. The yield was 2.41 mg from 1 l of bacterial culture. Assays revealed that the purity was up to 98% of the total protein. The fluorescence and circular dichroism spectrum of GFPmut3* demonstrated that the purified protein retains the correctly folded structure and function.


Assuntos
Cromatografia de Afinidade/métodos , Proteínas de Fluorescência Verde/isolamento & purificação , Inteínas , Proteínas Mutantes/isolamento & purificação , Dicroísmo Circular , Fluorescência , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas Mutantes/química , Proteínas Mutantes/genética , Ligação Proteica/genética , Dobramento de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação
20.
Appl Environ Microbiol ; 73(24): 7997-8000, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17951442
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA