Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ChemSusChem ; : e202400543, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691099

RESUMO

CO2 hydrogenation to methanol has emerged as a promising strategy for achieving carbon neutrality and mitigating global warming, in which the supported Pd/In2O3 catalysts are attracting great attention due to their high selectivity. Nonetheless, conventional impregnation methods induce strong metal-support interaction (SMSI) between Pd and In2O3, which leads to the excessive reduction of In2O3 and the formation of undesirable PdIn alloy in hydrogen-rich atmospheres. Herein, we innovatively synthesized Pd/In2O3 nanocatalysts by the electrostatic self-assembly process between surface-modified composite precursors with opposite charges. And the organic ligands concurrently serve as Pd nanoparticle protective agents. The resultant Pd/In2O3 nanocatalyst demonstrates the homogeneous distribution of Pd nanoparticles with controllable sizes on In2O3 supports and the limited formation of PdIn alloy. As a result, it exhibits superior selectivity and stability compared to the counterparts synthesized by the conventional impregnation procedure. Typically, it attains a maximum methanol space-time yield of 0.54 gMeOH h-1gcat -1 (300 °C, 3.5 MPa, 21,000 mL gcat -1 h-1). Notably, the correlation characterization results reveal the significant effect of small-size, highly dispersed Pd nanoparticles in mitigating MSI. These results provide an alternative strategy for synthesizing highly efficient Pd/In2O3 catalysts and offer a new insight into the strong metal-support interaction.

2.
Mater Horiz ; 11(4): 1079-1087, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38093683

RESUMO

Lead-free piezoceramics with large controllable deformations are highly desirable for numerous energy converter applications ranging from consumer electronics to medical microrobots. Although several new classes of high-performance ferroelectrics have been discovered, a universal strategy to enable various piezoceramics to realize large electromechanical deformations is still lacking. Herein, by gradually reducing the thickness from 0.5 mm to 0.1 mm, we discover that a large nominal electrostrain of ∼11.49% can be achieved in thin 0.937(Bi0.5Na0.5)TiO3-0.063BaTiO3 (BNT-BT) ceramics with highly asymmetric strain-electric field curves. Further analyses of the polarization switching process reveal that the boosted strain curves originate from the bending deformation driven by asymmetric ferroelastic switching in the surface layers. Based on this, one monolayer BNT-BT was designed to realize digital displacement actuation and a scanning mirror application with a maximum mirror deflection angle of 44.38°. Moreover, the surface effect-induced bending deformation can be extended to other piezoceramics, accompanied by derived shape retention effects. These discoveries raise the possibility of utilizing thickness engineering to design large-displacement actuators and may accelerate the development of high-performance lead-free piezoceramics.

3.
ACS Appl Mater Interfaces ; 13(44): 52479-52486, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34699169

RESUMO

Owing to low cost and high efficiency, nonprecious metal catalysts have been widely used in various types of fuel cells. To obtain a high-activity electrocatalyst, a simple method for the synthesis of iron-modified covalent triazine frameworks by the direct heating of a mixture of FeCl3, ZnCl2, ZnO, and m-phthalodinitrile is reported. The role and a possible evolution pathway of the oxygen of metallic oxides are well discussed. To further verify our assumption, the Fe3O4 microspherical nanomaterials were synthesized and the relative Fe-based catalyst (Fe-NX/C) was successfully obtained by the ionothermal polymerization method. Fe-NX/C exhibits an extraordinary oxygen reduction reaction (ORR) performance in acidic solution, with a half-wave potential of only 25 mV negative shifts compared with Pt/C, while the power density is approximately 56% of that of Pt/C catalysts under the proton exchange membrane fuel cell testing condition. This work represents a new strategy to synthesize high-performance Fe-based catalysts toward ORR.

4.
Nanoscale ; 12(28): 15115-15127, 2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32657297

RESUMO

Hierarchical iron-nitrogen-codoped porous hollow carbon spheres have been synthesized by using melamine-formaldehyde (MF) resin spheres as templates, nitrogen sources and pore-forming agents. FeCl3, 1,10-phenanthroline and carbon black were used as iron, nitrogen and carbon sources. The as-obtained porous hollow carbon spheres possess a high specific surface area of 807 m2 g-1, as well as exhibited excellent electrocatalytic activity for the oxygen reduction reaction (ORR) in both acidic and alkaline media. In 0.1 M HClO4 solution, the onset potential was 0.857 V (vs. RHE) and the half-wave potential was 0.715 V, which are only 78 and 80 mV less than those of the 20% Pt/C catalyst, respectively. In addition, in 0.1 M KOH solution, the onset potential was 1.017 V and the half-wave potential was 0.871 V for the ORR, which are 22 and 28 mV more positive than those of the Pt/C catalyst, respectively. Meanwhile, the catalyst also exhibited excellent methanol tolerance and long-term durability with a more effective four-electron pathway compared to the 20% Pt/C catalyst in both acidic and alkaline media. When used as an air-cathode catalyst for a Zn-air battery, the maximum power density of a Zn-air battery with the MF-C-Fe-Phen-800 cathode was 235 mW cm-2 at a high current density of 371 mA cm-2, and a high open-circuit potential of 1.654 V, superior to that of Pt/C (199 mW cm-2, 300 mA cm-2, 1.457 V). A series of designed experiments suggested that the remarkable performance was attributed to the high specific area, hollow carbon spheres, unique hierarchical micro-mesoporous structures, high contents of pyridinic-N and graphitic-N. The superiority of the as-prepared catalyst makes it promising for use in practical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA