Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 297(1): 100791, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34015334

RESUMO

Super-resolution microscopy has become an increasingly popular and robust tool across the life sciences to study minute cellular structures and processes. However, with the increasing number of available super-resolution techniques has come an increased complexity and burden of choice in planning imaging experiments. Choosing the right super-resolution technique to answer a given biological question is vital for understanding and interpreting biological relevance. This is an often-neglected and complex task that should take into account well-defined criteria (e.g., sample type, structure size, imaging requirements). Trade-offs in different imaging capabilities are inevitable; thus, many researchers still find it challenging to select the most suitable technique that will best answer their biological question. This review aims to provide an overview and clarify the concepts underlying the most commonly available super-resolution techniques as well as guide researchers through all aspects that should be considered before opting for a given technique.


Assuntos
Microscopia/métodos , Animais , Sobrevivência Celular , Corantes Fluorescentes/química , Humanos , Simulação de Dinâmica Molecular
2.
Mol Cancer Res ; 19(2): 274-287, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33097627

RESUMO

Elevated NF-κB activity is a contributory factor in many hematologic and solid malignancies. Nucleolar sequestration of NF-κB/RelA represses this elevated activity and mediates apoptosis of cancer cells. Here, we set out to understand the mechanisms that control the nuclear/nucleolar distribution of RelA and other regulatory proteins, so that agents can be developed that specifically target these proteins to the organelle. We demonstrate that RelA accumulates in intranucleolar aggresomes in response to specific stresses. We also demonstrate that the autophagy receptor, SQSTM1/p62, accumulates alongside RelA in these nucleolar aggresomes. This accumulation is not a consequence of inhibited autophagy. Indeed, our data suggest nucleolar and autophagosomal accumulation of p62 are in active competition. We identify a conserved motif at the N-terminus of p62 that is essential for nucleoplasmic-to-nucleolar transport of the protein. Furthermore, using a dominant-negative mutant deleted for this nucleolar localization signal (NoLS), we demonstrate a role for p62 in trafficking RelA and other aggresome-related proteins to nucleoli, to induce apoptosis. Together, these data identify a novel role for p62 in trafficking nuclear proteins to nucleolar aggresomes under conditions of cell stress, thus maintaining cellular homeostasis. They also provide invaluable information on the mechanisms that regulate the nuclear/nucleolar distribution of RelA that could be exploited for therapeutic purpose. IMPLICATIONS: The data open up avenues for the development of a unique class of therapeutic agents that act by targeting RelA and other aberrantly active proteins to nucleoli, thus killing cancer cells.


Assuntos
NF-kappa B/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteína Sequestossoma-1/metabolismo , Apoptose , Autofagia , Células Cultivadas , Humanos , Transdução de Sinais
3.
Sci Rep ; 9(1): 7713, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31118459

RESUMO

Physiological sensing deep in tissue remains a clinical challenge. Here a flexible miniaturised sensing optrode providing a platform to perform minimally invasive in vivo in situ measurements is reported. Silica microspheres covalently coupled with a high density of ratiometrically configured fluorophores were deposited into etched pits on the distal end of a 150 µm diameter multicore optical fibre. With this platform, photonic measurements of pH and oxygen concentration with high precision in the distal alveolar space of the lung are reported. We demonstrated the phenomenon that high-density deposition of carboxyfluorescein covalently coupled to silica microspheres shows an inverse shift in fluorescence in response to varying pH. This platform delivered fast and accurate measurements (±0.02 pH units and ±0.6 mg/L of oxygen), near instantaneous response time and a flexible architecture for addition of multiple sensors.


Assuntos
Tecnologia de Fibra Óptica/métodos , Fibras Ópticas , Alvéolos Pulmonares/diagnóstico por imagem , Animais , Broncoscopia , Feminino , Fluoresceínas/análise , Corantes Fluorescentes/análise , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Microesferas , Miniaturização , Oxigênio , Rodaminas/análise , Ovinos , Dióxido de Silício
4.
FEBS Lett ; 593(4): 395-405, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30636036

RESUMO

Rearrangements of the actin cytoskeleton are regulated in part by dynamic localised activation and inactivation of Rho family small GTPases. SWAP70 binds to and activates the small GTPase RAC1 as well as binding to filamentous actin and PIP3 . We have developed an encoded biosensor, which uses Forster resonance energy transfer to reveal conformational changes in SWAP70 in live cells. SWAP70 adopts a distinct conformation at the plasma membrane, which in migrating glioma cells is enriched at the leading edge but does not always associate with its PIP3 -dependent translocation to the membrane. This supports a role for SWAP70 in positive feedback activation of RAC1 at sites of filamentous actin, PIP3 and active RAC1.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Glioma/metabolismo , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Antígenos de Histocompatibilidade Menor/química , Antígenos de Histocompatibilidade Menor/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Pseudópodes/fisiologia , Citoesqueleto de Actina/metabolismo , Animais , Técnicas Biossensoriais , Linhagem Celular Tumoral , Membrana Celular/química , Membrana Celular/metabolismo , Movimento Celular , Transferência Ressonante de Energia de Fluorescência , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Fosfatos de Fosfatidilinositol/metabolismo , Conformação Proteica , Células Swiss 3T3 , Proteínas rac1 de Ligação ao GTP/metabolismo
5.
J Biol Chem ; 294(11): 4188-4201, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30655294

RESUMO

Autophagy is an intracellular degradation pathway that transports cytoplasmic material to the lysosome for hydrolysis. It is completed by SNARE-mediated fusion of the autophagosome and endolysosome membranes. This process must be carefully regulated to maintain the organization of the membrane system and prevent mistargeted degradation. As yet, models of autophagosomal fusion have not been verified within a cellular context because of difficulties with assessing protein interactions in situ Here, we used high-resolution fluorescence lifetime imaging (FLIM)-FRET of HeLa cells to identify protein interactions within the spatiotemporal framework of the cell. We show that autophagosomal syntaxin 17 (Stx17) heterotrimerizes with synaptosome-associated protein 29 (SNAP29) and vesicle-associated membrane protein 7 (VAMP7) in situ, highlighting a functional role for VAMP7 in autophagosome clearance that has previously been sidelined in favor of a role for VAMP8. Additionally, we identified multimodal regulation of SNARE assembly by the Sec1/Munc18 (SM) protein VPS33A, mirroring other syntaxin-SM interactions and therefore suggesting a unified model of SM regulation. Contrary to current theoretical models, we found that the Stx17 N-peptide appears to interact in a positionally conserved, but mechanistically divergent manner with VPS33A, providing a late "go, no-go" step for autophagic fusion via a phosphoserine master-switch. Our findings suggest that Stx17 fusion competency is regulated by a phosphosite in its N-peptide, representing a previously unknown regulatory step in mammalian autophagy.


Assuntos
Autofagia , Proteínas Qa-SNARE/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Células HeLa , Humanos , Imagem Óptica , Proteínas Qa-SNARE/química , Células Tumorais Cultivadas , Proteínas de Transporte Vesicular/química
6.
Chembiochem ; 19(23): 2443-2447, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30212615

RESUMO

The tyrosine side chain is amphiphilic leading to significant variations in the surface exposure of tyrosine residues in the folded structure of a native sequence protein. This variability can be exploited to give residue-selective functionalization of a protein substrate by using a highly reactive diazonium group tethered to an agarose-based resin. This novel catch-and-release approach to protein modification has been demonstrated for proteins with accessible tyrosine residues, which are compared with a control group of proteins in which there are no accessible tyrosine residues. MS analysis of the modified proteins showed that functionalization was highly selective, but reactivity was further attenuated by the electrostatic environment of any individual residue. Automated screening of PDB structures allows identification of potential candidates for selective modification by comparison with the accessibility of the tyrosine residue in a benchmark peptide (GYG).


Assuntos
Proteínas/química , Tirosina/química , Sequência de Aminoácidos , Aminofenóis/síntese química , Aminofenóis/química , Compostos de Diazônio/química , Ferricianetos/química , Fluoresceínas/síntese química , Fluoresceínas/química , Oligopeptídeos/química
7.
Opt Express ; 26(3): 2280-2291, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29401768

RESUMO

Single-photon avalanche photodiode (SPAD) image sensors offer time-gated photon counting, at high binary frame rates of >100 kFPS and with no readout noise. This makes them well-suited to a range of scientific applications, including microscopy, sensing and quantum optics. However, due to the complex electronics required, the fill factor tends to be significantly lower (< 10%) than that of EMCCD and sCMOS cameras (>90%), whilst the pixel size is typically larger, impacting the sensitivity and practicalities of the SPAD devices. This paper presents the first characterisation of a cylindrical-shaped microlens array applied to a small, 8 micron, pixel SPAD imager. The enhanced fill factor, ≈50% for collimated light, is the highest reported value amongst SPAD sensors with comparable resolution and pixel pitch. We demonstrate the impact of the increased sensitivity in single-molecule localisation microscopy, obtaining a resolution of below 40nm, the best reported figure for a SPAD sensor.

8.
EMBO J ; 37(1): 139-159, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29146773

RESUMO

Paraformaldehyde (PFA) is the most commonly used fixative for immunostaining of cells, but has been associated with various problems, ranging from loss of antigenicity to changes in morphology during fixation. We show here that the small dialdehyde glyoxal can successfully replace PFA Despite being less toxic than PFA, and, as most aldehydes, likely usable as a fixative, glyoxal has not yet been systematically tried in modern fluorescence microscopy. Here, we tested and optimized glyoxal fixation and surprisingly found it to be more efficient than PFA-based protocols. Glyoxal acted faster than PFA, cross-linked proteins more effectively, and improved the preservation of cellular morphology. We validated glyoxal fixation in multiple laboratories against different PFA-based protocols and confirmed that it enabled better immunostainings for a majority of the targets. Our data therefore support that glyoxal can be a valuable alternative to PFA for immunostaining.


Assuntos
Fixadores/química , Formaldeído/química , Glioxal/química , Imuno-Histoquímica/métodos , Microscopia de Fluorescência/métodos , Proteínas do Tecido Nervoso/metabolismo , Fixação de Tecidos/métodos , Animais , Células COS , Chlorocebus aethiops , Drosophila melanogaster , Células HeLa , Humanos , Camundongos
9.
Cell ; 169(7): 1214-1227.e18, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28622508

RESUMO

Higher eukaryotic chromosomes are organized into topologically constrained functional domains; however, the molecular mechanisms required to sustain these complex interphase chromatin structures are unknown. A stable matrix underpinning nuclear organization was hypothesized, but the idea was abandoned as more dynamic models of chromatin behavior became prevalent. Here, we report that scaffold attachment factor A (SAF-A), originally identified as a structural nuclear protein, interacts with chromatin-associated RNAs (caRNAs) via its RGG domain to regulate human interphase chromatin structures in a transcription-dependent manner. Mechanistically, this is dependent on SAF-A's AAA+ ATPase domain, which mediates cycles of protein oligomerization with caRNAs, in response to ATP binding and hydrolysis. SAF-A oligomerization decompacts large-scale chromatin structure while SAF-A loss or monomerization promotes aberrant chromosome folding and accumulation of genome damage. Our results show that SAF-A and caRNAs form a dynamic, transcriptionally responsive chromatin mesh that organizes large-scale chromosome structures and protects the genome from instability.


Assuntos
Cromossomos/metabolismo , Instabilidade Genômica , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/metabolismo , RNA Nuclear Pequeno/metabolismo , Sequência de Aminoácidos , Cromatina , Células HEK293 , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/química , Humanos , Interfase , Modelos Moleculares , Alinhamento de Sequência , Transcrição Gênica
10.
Curr Biol ; 27(3): 408-414, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-28089515

RESUMO

Eukaryotic plasma membrane organization theory has long been controversial, in part due to a dearth of suitably high-resolution techniques to probe molecular architecture in situ and integrate information from diverse data streams [1]. Notably, clustered patterning of membrane proteins is a commonly conserved feature across diverse protein families (reviewed in [2]), including the SNAREs [3], SM proteins [4, 5], ion channels [6, 7], and receptors (e.g., [8]). Much effort has gone into analyzing the behavior of secretory organelles [9-13], and understanding the relationship between the membrane and proximal organelles [4, 5, 12, 14] is an essential goal for cell biology as broad concepts or rules may be established. Here we explore the generally accepted model that vesicles at the plasmalemma are guided by cytoskeletal tracks to specific sites on the membrane that have clustered molecular machinery for secretion [15], organized in part by the local lipid composition [16]. To increase our understanding of these fundamental processes, we integrated nanoscopy and spectroscopy of the secretory machinery with organelle tracking data in a mathematical model, iterating with knockdown cell models. We find that repeated routes followed by successive vesicles, the re-use of similar fusion sites, and the apparently distinct vesicle "pools" are all fashioned by the Brownian behavior of organelles overlaid on navigation between non-reactive secretory protein molecular depots patterned at the plasma membrane.


Assuntos
Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Exocitose/fisiologia , Fusão de Membrana/fisiologia , Organelas/metabolismo , Vesículas Secretórias/metabolismo , Animais , Transporte Biológico , Células PC12 , Ratos , Proteínas SNARE/metabolismo
11.
Sci Rep ; 7: 40375, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28071717

RESUMO

The chemical nature of the non-tryptophan (non-Trp) fluorescence of porcine and human eye lens proteins was identified by Mass Spectrometry (MS) and Fluorescence Steady-State and Lifetime spectroscopy as post-translational modifications (PTM) of Trp and Arg amino acid residues. Fluorescence intensity profiles measured along the optical axis of human eye lenses with age-related nuclear cataract showed increasing concentration of fluorescent PTM towards the lens centre in accord with the increased optical density in the lens nucleolus. Significant differences between fluorescence lifetimes of "free" Trp derivatives hydroxytryptophan (OH-Trp), N-formylkynurenine (NFK), kynurenine (Kyn), hydroxykynurenine (OH-Kyn) and their residues were observed. Notably, the lifetime constants of these residues in a model peptide were considerably greater than those of their "free" counterparts. Fluorescence of Trp, its derivatives and argpyrimidine (ArgP) can be excited at the red edge of the Trp absorption band which allows normalisation of the emission spectra of these PTMs to the fluorescence intensity of Trp, to determine semi-quantitatively their concentration. We show that the cumulative fraction of OH-Trp, NFK and ArgP emission dominates the total fluorescence spectrum in both emulsified post-surgical human cataract protein samples, as well as in whole lenses and that this correlates strongly with cataract grade and age.


Assuntos
Catarata/diagnóstico , Catarata/genética , Cristalinas/genética , Processamento de Proteína Pós-Traducional/genética , Animais , Catarata/patologia , Cromatografia Líquida de Alta Pressão , Cristalinas/isolamento & purificação , Fluorescência , Humanos , Cristalino/metabolismo , Cristalino/patologia , Espectrometria de Massas , Espectrometria de Fluorescência , Suínos , Triptofano/química , Triptofano/isolamento & purificação , Raios Ultravioleta
12.
Am J Physiol Renal Physiol ; 312(1): F200-F209, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28069661

RESUMO

Renin is the initiator and rate-limiting factor in the renin-angiotensin blood pressure regulation system. Although renin is not exclusively produced in the kidney, in nonmurine species the synthesis and secretion of the active circulatory enzyme is confined almost exclusively to the dense core granules of juxtaglomerular (JG) cells, where prorenin is processed and stored for release via a regulated pathway. Despite its importance, the structural organization and regulation of granules within these cells is not well understood, in part due to the difficulty in culturing primary JG cells in vitro and the lack of appropriate cell lines. We have streamlined the isolation and culture of primary renin-expressing cells suitable for high-speed, high-resolution live imaging using a Percoll gradient-based procedure to purify cells from RenGFP+ transgenic mice. Fibronectin-coated glass coverslips proved optimal for the adhesion of renin-expressing cells and facilitated live cell imaging at the plasma membrane of primary renin cells using total internal reflection fluorescence microscopy (TIRFM). To obtain quantitative data on intracellular function, we stained mixed granule and lysosome populations with Lysotracker Red and stimulated cells using 100 nM isoproterenol. Analysis of membrane-proximal acidic granular organelle dynamics and behavior within renin-expressing cells revealed the existence of two populations of granular organelles with distinct functional responses following isoproterenol stimulation. The application of high-resolution techniques for imaging JG and other specialized kidney cells provides new opportunities for investigating renal cell biology.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Sistema Justaglomerular/metabolismo , Sistema Renina-Angiotensina/fisiologia , Renina/metabolismo , Animais , Células Cultivadas , Lisossomos/metabolismo , Camundongos , Microscopia/métodos
13.
Wellcome Open Res ; 2: 107, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29623296

RESUMO

We developed a simple, cost-effective smartphone microscopy platform for use in educational and public engagement programs. We demonstrated its effectiveness, and potential for citizen science through a national imaging initiative, EnLightenment. The cost effectiveness of the instrument allowed for the program to deliver over 500 microscopes to more than 100 secondary schools throughout Scotland, targeting 1000's of 12-14 year olds. Through careful, quantified, selection of a high power, low-cost objective lens, our smartphone microscope has an imaging resolution of microns, with a working distance of 3 mm. It is therefore capable of imaging single cells and sub-cellular features, and retains usability for young children. The microscopes were designed in kit form and provided an interdisciplinary educational tool. By providing full lesson plans and support material, we developed a framework to explore optical design, microscope performance, engineering challenges on construction and real-world applications in life sciences, biological imaging, marine biology, art, and technology. A national online imaging competition framed EnLightenment; with over 500 high quality images submitted of diverse content, spanning multiple disciplines. With examples of cellular and sub-cellular features clearly identifiable in some submissions, we show how young public can use these instruments for research-level imaging applications, and the potential of the instrument for citizen science programs.

14.
Sci Rep ; 6: 37349, 2016 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-27876857

RESUMO

Single molecule localisation microscopy (SMLM) has become an essential part of the super-resolution toolbox for probing cellular structure and function. The rapid evolution of these techniques has outstripped detector development and faster, more sensitive cameras are required to further improve localisation certainty. Single-photon avalanche photodiode (SPAD) array cameras offer single-photon sensitivity, very high frame rates and zero readout noise, making them a potentially ideal detector for ultra-fast imaging and SMLM experiments. However, performance traditionally falls behind that of emCCD and sCMOS devices due to lower photon detection efficiency. Here we demonstrate, both experimentally and through simulations, that the sensitivity of a binary SPAD camera in SMLM experiments can be improved significantly by aggregating only frames containing signal, and that this leads to smaller datasets and competitive performance with that of existing detectors. The simulations also indicate that with predicted future advances in SPAD camera technology, SPAD devices will outperform existing scientific cameras when capturing fast temporal dynamics.

15.
R Soc Open Sci ; 3(5): 160225, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27293801

RESUMO

Recent advances in optical microscopy have enabled the acquisition of very large datasets from living cells with unprecedented spatial and temporal resolutions. Our ability to process these datasets now plays an essential role in order to understand many biological processes. In this paper, we present an automated particle detection algorithm capable of operating in low signal-to-noise fluorescence microscopy environments and handling large datasets. When combined with our particle linking framework, it can provide hitherto intractable quantitative measurements describing the dynamics of large cohorts of cellular components from organelles to single molecules. We begin with validating the performance of our method on synthetic image data, and then extend the validation to include experiment images with ground truth. Finally, we apply the algorithm to two single-particle-tracking photo-activated localization microscopy biological datasets, acquired from living primary cells with very high temporal rates. Our analysis of the dynamics of very large cohorts of 10 000 s of membrane-associated protein molecules show that they behave as if caged in nanodomains. We show that the robustness and efficiency of our method provides a tool for the examination of single-molecule behaviour with unprecedented spatial detail and high acquisition rates.

16.
Sci Rep ; 6: 24626, 2016 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-27109929

RESUMO

The molecular features of synapses in the hippocampus underpin current models of learning and cognition. Although synapse ultra-structural diversity has been described in the canonical hippocampal circuitry, our knowledge of sub-synaptic organisation of synaptic molecules remains largely unknown. To address this, mice were engineered to express Post Synaptic Density 95 protein (PSD95) fused to either eGFP or mEos2 and imaged with two orthogonal super-resolution methods: gated stimulated emission depletion (g-STED) microscopy and photoactivated localisation microscopy (PALM). Large-scale analysis of ~100,000 synapses in 7 hippocampal sub-regions revealed they comprised discrete PSD95 nanoclusters that were spatially organised into single and multi-nanocluster PSDs. Synapses in different sub-regions, cell-types and locations along the dendritic tree of CA1 pyramidal neurons, showed diversity characterised by the number of nanoclusters per synapse. Multi-nanocluster synapses were frequently found in the CA3 and dentate gyrus sub-regions, corresponding to large thorny excrescence synapses. Although the structure of individual nanoclusters remained relatively conserved across all sub-regions, PSD95 packing into nanoclusters also varied between sub-regions determined from nanocluster fluorescence intensity. These data identify PSD95 nanoclusters as a basic structural unit, or building block, of excitatory synapses and their number characterizes synapse size and structural diversity.


Assuntos
Proteína 4 Homóloga a Disks-Large/metabolismo , Sinapses Elétricas/metabolismo , Hipocampo/fisiologia , Multimerização Proteica , Células Piramidais/fisiologia , Animais , Proteína 4 Homóloga a Disks-Large/química , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Microscopia , Nanoestruturas/química , Transmissão Sináptica
18.
Sci Rep ; 6: 19993, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26822455

RESUMO

Super-resolution microscopy is transforming our understanding of biology but accessibility is limited by its technical complexity, high costs and the requirement for bespoke sample preparation. We present a novel, simple and multi-color super-resolution microscopy technique, called translation microscopy (TRAM), in which a super-resolution image is restored from multiple diffraction-limited resolution observations using a conventional microscope whilst translating the sample in the image plane. TRAM can be implemented using any microscope, delivering up to 7-fold resolution improvement. We compare TRAM with other super-resolution imaging modalities, including gated stimulated emission deletion (gSTED) microscopy and atomic force microscopy (AFM). We further developed novel 'ground-truth' DNA origami nano-structures to characterize TRAM, as well as applying it to a multi-color dye-stained cellular sample to demonstrate its fidelity, ease of use and utility for cell biology.


Assuntos
Microscopia de Fluorescência/métodos , Animais , Células Endoteliais , Microscopia de Fluorescência/normas , Pontos Quânticos
19.
Angew Chem Int Ed Engl ; 54(13): 3957-61, 2015 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-25656851

RESUMO

A rapidly formed supramolecular polypeptide-DNA hydrogel was prepared and used for in situ multilayer three-dimensional bioprinting for the first time. By alternative deposition of two complementary bio-inks, designed structures can be printed. Based on their healing properties and high mechanical strengths, the printed structures are geometrically uniform without boundaries and can keep their shapes up to the millimeter scale without collapse. 3D cell printing was demonstrated to fabricate live-cell-containing structures with normal cellular functions. Together with the unique properties of biocompatibility, permeability, and biodegradability, the hydrogel becomes an ideal biomaterial for 3D bioprinting to produce designable 3D constructs for applications in tissue engineering.


Assuntos
Bioimpressão/métodos , DNA/química , Hidrogéis/síntese química , Peptídeos/síntese química , Materiais Biocompatíveis/síntese química , Fenômenos Fisiológicos Celulares , Células/química , Desoxirribonucleases/química , Modelos Moleculares , Conformação de Ácido Nucleico , Permeabilidade , Engenharia Tecidual
20.
Nat Commun ; 5: 5774, 2014 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-25517944

RESUMO

Neuronal synapses are among the most scrutinized of cellular systems, serving as a model for all membrane trafficking studies. Despite this, synaptic biology has proven difficult to interrogate directly in situ due to the small size and dynamic nature of central synapses and the molecules within them. Here we determine the spatial and temporal interaction status of presynaptic proteins, imaging large cohorts of single molecules inside active synapses. Measuring rapid interaction dynamics during synaptic depolarization identified the small number of syntaxin1a and munc18-1 protein molecules required to support synaptic vesicle exocytosis. After vesicle fusion and subsequent SNARE complex disassembly, a prompt switch in syntaxin1a and munc18-1-binding mode, regulated by charge alteration on the syntaxin1a N-terminal, sequesters monomeric syntaxin1a from other disassembled fusion complex components, preventing ectopic SNARE complex formation, readying the synapse for subsequent rounds of neurotransmission.


Assuntos
Exocitose/genética , Proteínas Munc18/metabolismo , Sinapses/metabolismo , Vesículas Sinápticas/metabolismo , Sintaxina 1/metabolismo , Animais , Toxinas Botulínicas/farmacologia , Toxinas Botulínicas Tipo A/farmacologia , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Embrião de Mamíferos , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Fusão de Membrana , Imagem Molecular , Proteínas Munc18/genética , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Cultura Primária de Células , Ligação Proteica , Transporte Proteico , Ratos , Ratos Sprague-Dawley , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/ultraestrutura , Transmissão Sináptica , Vesículas Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/ultraestrutura , Sintaxina 1/genética , Proteína Vermelha Fluorescente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA