Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Evol Appl ; 16(6): 1119-1134, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37360023

RESUMO

Invasive species are a major threat to global biodiversity, yet also represent large-scale unplanned ecological and evolutionary experiments to address fundamental questions in nature. Here we analyzed both native and invasive populations of predatory northern pike (Esox lucius) to characterize landscape genetic variation, determine the most likely origins of introduced populations, and investigate a presumably postglacial population from Southeast Alaska of unclear provenance. Using a set of 4329 SNPs from 351 individual Alaskan northern pike representing the most widespread geographic sampling to date, our results confirm low levels of genetic diversity in native populations (average 𝝅 of 3.18 × 10-4) and even less in invasive populations (average 𝝅 of 2.68 × 10-4) consistent with bottleneck effects. Our analyses indicate that invasive northern pike likely came from multiple introductions from different native Alaskan populations and subsequently dispersed from original introduction sites. At the broadest scale, invasive populations appear to have been founded from two distinct regions of Alaska, indicative of two independent introduction events. Genetic admixture resulting from introductions from multiple source populations may have mitigated the negative effects associated with genetic bottlenecks in this species with naturally low levels of genetic diversity. Genomic signatures strongly suggest an excess of rare, population-specific alleles, pointing to a small number of founding individuals in both native and introduced populations consistent with a species' life history of limited dispersal and gene flow. Lastly, the results strongly suggest that a small isolated population of pike, located in Southeast Alaska, is native in origin rather than stemming from a contemporary introduction event. Although theory predicts that lack of genetic variation may limit colonization success of novel environments, we detected no evidence that a lack of standing variation limited the success of this genetically depauperate apex predator.

2.
Chemosphere ; 288(Pt 2): 132478, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34626650

RESUMO

Rotenone is a pesticide commonly used to eradicate Northern Pike (Esox lucius), an invasive species, in Southcentral Alaska. The present work incorporates a field investigation of rotenone attenuation in eight lakes of the Kenai Peninsula, following a CFT Legumine® treatment in October 2018 and a laboratory simulation to determine persistence under light/dark and sterile/nonsterile conditions representative of Southcentral Alaskan winters. In the field, rotenone degraded within <60 days of application in all lakes, while rotenolone, the primary product of rotenone degradation, persisted for up to <280 days post-treatment at two locations. Prolonged rotenolone attenuation was most likely caused by short days and ice cover between October and April. This hypothesis was supported by a laboratory simulation which revealed photolysis as the dominant process driving the overall degradation of rotenone and that microbial degradation will significantly contribute in the absence of sunlight under simulated "winter" conditions of 4 °C. Degradation model fit comparisons (pseudo-first order, multi-parameter linear, and gamma) indicate the most accurate prediction occurred when modeling all eight lakes grouped together in a single dataset, combined and treated with pseudo-first order model kinetics, based on Akaike information criteria (AIC) scores.


Assuntos
Praguicidas , Rotenona , Alaska , Laboratórios , Lagos
3.
PLoS One ; 16(7): e0254097, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34214119

RESUMO

The relentless role of invasive species in the extinction of native biota requires predictions of ecosystem vulnerability to inform proactive management strategies. The worldwide invasion and range expansion of predatory northern pike (Esox lucius) has been linked to the decline of native fishes and tools are needed to predict the vulnerability of habitats to invasion over broad geographic scales. To address this need, we coupled an intrinsic potential habitat modelling approach with a Bayesian network to evaluate the vulnerability of five culturally and economically vital species of Pacific salmon (Oncorhynchus spp.) to invasion by northern pike. This study was conducted along 22,875 stream km in the Southcentral region of Alaska, USA. Pink salmon (O. gorbuscha) were the most vulnerable species, with 15.2% (2,458 km) of their calculated extent identified as "highly" vulnerable, followed closely by chum salmon (O. keta, 14.8%; 2,557 km) and coho salmon (O. kisutch, 14.7%; 2,536 km). Moreover, all five Pacific salmon species were highly vulnerable in 1,001 stream km of shared habitat. This simple to implement, adaptable, and cost-effective framework will allow prioritizing habitats for early detection and monitoring of invading northern pike.


Assuntos
Esocidae/fisiologia , Espécies Introduzidas , Oncorhynchus/fisiologia , Alaska , Animais , Teorema de Bayes , Ecossistema , Geografia , Atividades Humanas , Modelos Teóricos , Rios , Especificidade da Espécie
5.
PLoS One ; 11(9): e0162277, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27626271

RESUMO

Determining the success of invasive species eradication efforts is challenging because populations at very low abundance are difficult to detect. Environmental DNA (eDNA) sampling has recently emerged as a powerful tool for detecting rare aquatic animals; however, detectable fragments of DNA can persist over time despite absence of the targeted taxa and can therefore complicate eDNA sampling after an eradication event. This complication is a large concern for fish eradication efforts in lakes since killed fish can sink to the bottom and slowly decay. DNA released from these carcasses may remain detectable for long periods. Here, we evaluated the efficacy of eDNA sampling to detect invasive Northern pike (Esox lucius) following piscicide eradication efforts in southcentral Alaskan lakes. We used field observations and experiments to test the sensitivity of our Northern pike eDNA assay and to evaluate the persistence of detectable DNA emitted from Northern pike carcasses. We then used eDNA sampling and traditional sampling (i.e., gillnets) to test for presence of Northern pike in four lakes subjected to a piscicide-treatment designed to eradicate this species. We found that our assay could detect an abundant, free-roaming population of Northern pike and could also detect low-densities of Northern pike held in cages. For these caged Northern pike, probability of detection decreased with distance from the cage. We then stocked three lakes with Northern pike carcasses and collected eDNA samples 7, 35 and 70 days post-stocking. We detected DNA at 7 and 35 days, but not at 70 days. Finally, we collected eDNA samples ~ 230 days after four lakes were subjected to piscicide-treatments and detected Northern pike DNA in 3 of 179 samples, with a single detection at each of three lakes, though we did not catch any Northern pike in gillnets. Taken together, we found that eDNA can help to inform eradication efforts if used in conjunction with multiple lines of inquiry and sampling is delayed long enough to allow full degradation of DNA in the water.


Assuntos
DNA/análise , Monitoramento Ambiental/métodos , Esocidae/genética , Espécies Introduzidas , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA