Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(19): 11471-11485, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35532142

RESUMO

Lithium nickel manganese cobalt oxide (NMC) is a commercially successful Li-ion battery cathode due to its high energy density; however, its delivered capacity must be intentionally limited to achieve capacity retention over extended cycling. To design next-generation NMC batteries with longer life and higher capacity the origins of high potential capacity fade must be understood. Operando hard X-ray characterization techniques are critical for this endeavor as they allow the acquisition of information about the evolution of structure, oxidation state, and coordination environment of NMC as the material (de)lithiates in a functional battery. This perspective outlines recent developments in the elucidation of capacity fade mechanisms in NMC through hard X-ray probes, surface sensitive soft X-ray characterization, and isothermal microcalorimetry. A case study on the effect of charging potential on NMC811 over extended cycling is presented to illustrate the benefits of these approaches. The results showed that charging to 4.7 V leads to higher delivered capacity, but much greater fade as compared to charging to 4.3 V. Operando XRD and SEM results indicated that particle fracture from increased structural distortions at >4.3 V was a contributor to capacity fade. Operando hard XAS revealed significant Ni and Co redox during cycling as well as a Jahn-Teller distortion at the discharged state (Ni3+); however, minimal differences were observed between the cells charged to 4.3 and 4.7 V. Additional XAS analyses using soft X-rays revealed significant surface reconstruction after cycling to 4.7 V, revealing another contribution to fade. Operando isothermal microcalorimetry (IMC) indicated that the high voltage charge to 4.7 V resulted in a doubling of the heat dissipation when compared to charging to 4.3 V. A lowered chemical-to-electrical energy conversion efficiency due to thermal energy waste was observed, providing a complementary characterization of electrochemical degradation. The work demonstrates the utility of multi-modal X-ray and microcalorimetric approaches to understand the causes of capacity fade in lithium-ion batteries with Ni-rich NMC.

2.
ACS Appl Mater Interfaces ; 13(43): 50920-50935, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34694108

RESUMO

Ni-rich NMC is an attractive Li-ion battery cathode due to its combination of energy density, thermal stability, and reversibility. While higher delivered energy density can be achieved with a more positive charge voltage limit, this approach compromises sustained reversibility. Improved understanding of the local and bulk structural transformations as a function of charge voltage, and their associated impacts on capacity fade are critically needed. Through simultaneous operando synchrotron X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) of cells cycled at 3-4.3 or 3-4.7 V, this study presents an in-depth investigation into the effects of voltage window on local coordination, bulk structure, and oxidation state. These measurements are complemented by ex situ X-ray fluorescence (XRF) mapping and scanning electrochemical microscopy mapping (SECM) of the negative electrode, X-ray photoelectron spectroscopy (XPS) of the positive electrode, and cell level electrochemical impedance spectroscopy (EIS). Initially, cycling between 3 and 4.7 V leads to greater delivered capacity due to greater lithium extraction, accompanied by increased structural distortion, moderately higher Ni oxidation, and substantially higher Co oxidation. Continued cycling at this high voltage results in suppressed Ni and Co redox, greater structural distortion, increased levels of transition metal dissolution, higher cell impedance, and 3× greater capacity fade.

3.
Inorg Chem ; 60(14): 10398-10414, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34236171

RESUMO

A series of V-substituted α-MnO2 (KxMn8-yVyO16·nH2O, y = 0, 0.2, 0.34, 0.75) samples were successfully synthesized without crystalline or amorphous impurities, as evidenced by X-ray diffraction (XRD) and Raman spectroscopy. Transmission electron microscopy (TEM) revealed a morphological evolution from nanorods to nanoplatelets as V-substitution increased, while electron-energy loss spectroscopy (EELS) confirmed uniform distribution of vanadium within the materials. Rietveld refinement of synchrotron XRD showed an increase in bond lengths and a larger range of bond angles with increasing V-substitution. X-ray absorption spectroscopy (XAS) of the as-prepared materials revealed the V valence to be >4+ and the Mn valence to decrease with increasing V content. Upon electrochemical lithiation, increasing amounts of V were found to preserve the Mn-Mnedge relationship at higher depths of discharge, indicating enhanced structural stability. Electrochemical testing showed the y = 0.75 V-substituted sample to deliver the highest capacity and capacity retention after 50 cycles. The experimental findings were consistent with the predictions of density functional theory (DFT), where the V centers impart structural stability to the manganese oxide framework upon lithiation. The enhanced electrochemistry of the y = 0.75 V-substituted sample is also attributed to its smaller crystallite size in the form of a nanoplatelet morphology, which promotes facile ion access via reduced Li-ion diffusion path lengths.

4.
Phys Chem Chem Phys ; 23(1): 139-150, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33025989

RESUMO

The phase distribution of lithiated LVO in thick (∼500 µm) porous electrodes (TPEs) designed to facilitate both ion and electron transport was determined using synchrotron-based operando energy dispersive X-ray diffraction (EDXRD). Probing 3 positions in the TPE while cycling at a 1C rate revealed a homogeneous phase transition across the thickness of the electrode at the 1st and 95th cycles. Continuum modelling indicated uniform lithiation across the TPE in agreement with the EDXRD results and ascribed decreasing accessible active material to be the cause of loss in delivered capacity between the 1st and 95th cycles. The model was supported by the observation of significant particle fracture by SEM consistent with loss of electrical contact. Overall, the combination of operando EDXRD, continuum modeling, and ex situ measurements enabled a deeper understanding of lithium vanadium oxide transport properties under high rate extended cycling within a thick highly porous electrode architecture.

5.
ChemSusChem ; 13(6): 1517-1528, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-31705599

RESUMO

One of the inherent challenges with Li-S batteries is polysulfide dissolution, in which soluble polysulfide species can contribute to the active material loss from the cathode and undergo shuttling reactions inhibiting the ability to effectively charge the battery. Prior theoretical studies have proposed the possible benefit of defective 2 D MoS2 materials as polysulfide trapping agents. Herein the synthesis and thorough characterization of hydrothermally prepared MoS2 nanosheets that vary in layer number, morphology, lateral size, and defect content are reported. The materials were incorporated into composite sulfur-based cathodes and studied in Li-S batteries with environmentally benign ether-based electrolytes. Through directed synthesis of the MoS2 additive, the relationship between synthetically induced defects in 2 D MoS2 materials and resultant electrochemistry was elucidated and described.

6.
ACS Appl Mater Interfaces ; 11(47): 44046-44057, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31714051

RESUMO

While the focus of research related to the design of robust, high-performance Li-ion batteries relates primarily to the synthesis of active particles, the binder plays a crucial role in stability and ensures electrode integrity during volume changes that occur with cycling. Conventional polymeric binders such as poly(vinylidene difluoride) generally do not interact with active particle surfaces and fail to accommodate large changes in particle spacing during cycling. Thus, attention is now turning toward the exploration of interfacial interactions between composite electrode constituents as a key element in ensuring electrode stability. Recently, a poly[3-(potassium-4-butanoate)thiophene] (PPBT) binder component, coupled with a polyethylene glycol (PEG) surface coating for the active material was demonstrated to enhance both electron and ion transport in magnetite-based anodes, and it was established that the PEG/PPBT approach aids in overall battery electrode performance. Herein, the PEG/PPBT system is used as a model polymeric binder for understanding cation effects in anode systems. As such, the potassium ion was replaced with sodium, lithium, hydrogen, and ammonium through ion exchange. The potassium salt exhibited the most stable electrochemical performance, which is attributed to the cation size and resultant electrode morphology that facilitates ion transport. The lithium analogue demonstrated an initial increase in capacity but was unable to maintain this performance over 100 cycles; while the sodium-based system exhibited initially lower capacity as a result of slow reaction kinetics, which increased as cycling progressed. The parent carboxylic acid polymer and its ammonium salt were notably inferior. The results exploring the effect of ion exchange creates a framework for understanding how cations associated directly with the polymer impact electrochemical performance and aid in the overall design of binders for composite Li-ion battery anodes.

7.
ACS Appl Mater Interfaces ; 11(22): 19920-19932, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31042346

RESUMO

Fe3O4 nanoparticles (NPs) with an average size of 8-10 nm have been successfully functionalized with various surface-treatment agents to serve as model systems for probing surface chemistry-dependent electrochemistry of the resulting electrodes. The surface-treatment agents used for the functionalization of Fe3O4 anode materials were systematically varied to include aromatic or aliphatic structures: 4-mercaptobenzoic acid, benzoic acid (BA), 3-mercaptopropionic acid, and propionic acid (PA). Both structural and electrochemical characterizations have been used to systematically correlate the electrode functionality with the corresponding surface chemistry. Surface treatment with ligands led to better Fe3O4 dispersion, especially with the aromatic ligands. Electrochemistry was impacted where the PA- and BA-treated Fe3O4 systems without the -SH group demonstrated a higher rate capability than their thiol-containing counterparts and the pristine Fe3O4. Specifically, the PA system delivered the highest capacity and cycling stability among all samples tested. Notably, the aromatic BA system outperformed the aliphatic PA counterpart during extended cycling under high current density, due to the improved charge transfer and ion transport kinetics as well as better dispersion of Fe3O4 NPs, induced by the conjugated system. Our surface engineering of the Fe3O4 electrode presented herein, highlights the importance of modifying the structure and chemistry of surface-treatment agents as a plausible means of enhancing the interfacial charge transfer within metal oxide composite electrodes without hampering the resulting tap density of the resulting electrode.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA