Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Viral Immunol ; 36(1): 41-47, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36622942

RESUMO

Cache Valley virus (CVV) is a mosquito-borne bunyavirus that is enzootic throughout the new world. Although CVV is known as an important agricultural pathogen, primarily associated with embryonic lethality and abortions in ruminants, it has recently been recognized for its expansion as a zoonotic pathogen. With the increased emergence of bunyaviruses with human and veterinary importance, there have been significant efforts dedicated to the development of bunyavirus vaccines. In this study, the immunogenicity of a candidate live-attenuated vaccine (LAV) for CVV, which contains the deletion of the nonstructural small (NSs) and nonstructural medium (NSm) genes (2delCVV), was evaluated and compared with an autogenous candidate vaccine created through the inactivation of CVV using binary ethylenimine (BEI) with an aluminum hydroxide adjuvant (BEI-CVV) in sheep. Both 2delCVV and BEI-CVV produced a neutralizing antibody response that exceeds the correlate of protection, that is, plaque reduction neutralization test titer >10. However, on day 63 postinitial immunization, 2delCVV was more immunogenic than BEI-CVV. These results warrant further development of 2delCVV as a candidate LAV and demonstrate that the double deletion of the NSs and NSm genes can be applied to the development of vaccines and as a common attenuation strategy for orthobunyaviruses.


Assuntos
Vírus Bunyamwera , Vacinas Virais , Gravidez , Feminino , Animais , Humanos , Ovinos , Vírus Bunyamwera/fisiologia , Vacinas Atenuadas , Vacinas de Produtos Inativados , Anticorpos Neutralizantes
2.
Viral Immunol ; 36(1): 33-40, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36399689

RESUMO

Rift Valley fever virus (RVFV) is an emerging arbovirus that affects both ruminants and humans. RVFV causes severe and recurrent outbreaks in Africa and the Arabian Peninsula with a significant risk for emergence into new locations. Although there are a variety of RVFV veterinary vaccines for use in endemic areas, there is currently no licensed vaccine for human use; therefore, there is a need to develop and assess new vaccines. Herein, we report a live-attenuated recombinant vaccine candidate for RVFV, based on the previously described genomic reconfiguration of the conditionally licensed MP12 vaccine. There are two general strategies used to develop live-attenuated RVFV vaccines, one being serial passage of wild-type RVFV strains to select attenuated mutants such as Smithburn, Clone 13, and MP12 vaccine strains. The second strategy has utilized reverse genetics to attenuate RVFV strains by introducing deletions or insertions within the viral genome. The novel candidate vaccine characterized in this report contains a two-segmented genome that lacks the medium viral segment (M) and two virulence genes (nonstructural small and nonstructural medium). The vaccine candidate, named r2segMP12, was evaluated for the production of neutralizing antibodies to RVFV in outbred CD-1 mice. The immune response induced by the r2segMP12 vaccine candidate was directly compared to the immune response induced by the rMP12 parental strain vaccine. Our study demonstrated that a single immunization with the r2segMP12 vaccine candidate at 105 plaque-forming units elicited a higher neutralizing antibody response than the rMP12 vaccine at the same vaccination titer without the need for a booster.


Assuntos
Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Vacinas Virais , Humanos , Animais , Camundongos , Vírus da Febre do Vale do Rift/genética , Febre do Vale de Rift/prevenção & controle , Febre do Vale de Rift/epidemiologia , Vacinas Atenuadas/genética , Vacinas Virais/genética , Anticorpos Neutralizantes
3.
Vector Borne Zoonotic Dis ; 22(11): 553-558, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36354965

RESUMO

Background: The emergence or re-emergence of several orthobunyaviruses (order: Bunyavirales; family: Peribunyaviridae), including Cache Valley virus (CVV) and Oropouche virus, warrants the development and evaluation of candidate live-attenuated vaccines (LAVs). Ideally, these vaccines would elicit long-lasting immunity with one single immunization. Materials and Methods: Since the deletion of two virulence factors, NSs and NSm, has been shown to attenuate the virulence phenotype of orthobunyaviruses, phleboviruses, and nairoviruses, genetic manipulation of the viral genome is considered an effective strategy for the rational design of candidate LAVs for bunyaviruses across multiple families. In addition, the deletion of Rift Valley fever virus NSs and NSm genes has been shown to reduce transmission by mosquitoes. Results: In this study, the ability of a CVV mutant lacking the NSs and NSm genes (2delCVV) to replicate in intrathoracically injected Aedes albopictus was compared with the parental wild-type CVV (wtCVV) 6V633 strain. In contrast to the robust replication of wtCVV in injected mosquitoes, the multiplication kinetics of the 2delCVV mutant was reduced by more than a 100-fold. Conclusion: These results suggest that the deletion of NSm and NSs genes is a feasible approach to rationally design candidate orthobunyavirus LAVs that are highly attenuated in mosquitoes and, therefore, pose little risk of reversion to virulence and transmission.


Assuntos
Aedes , Vírus Bunyamwera , Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Vacinas Virais , Animais , Vacinas Atenuadas , Cinética , Vírus da Febre do Vale do Rift/genética , Replicação Viral
4.
Viruses ; 14(7)2022 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-35891372

RESUMO

Hepatitis C virus (HCV) infection is a major global health problem. In the majority of cases the virus is not cleared by the host immune response and progresses to chronic infection. Studies of the neutralizing antibody responses in individuals that naturally clear infection are limited. Understanding what constitutes a successful antibody response versus one that has 'failed' and resulted in chronic infection is important to understand what type of antibody response would need to be elicited by a protective vaccine. Samples from spontaneous clearers are difficult to obtain therefore studies are often limited. In our study through HCV Research UK, we had access to a cohort of over 200 samples. We identified the samples that contained HCV neutralizing antibodies using ELISA and HCV pseudoparticle (HCVpp) assays. We then utilised mutagenesis and cross-competition analysis to determine the profile of the neutralizing antibody responses. In addition, we analysed a cohort of samples from chronic infection using the same techniques to enable direct comparison of the antibody profiles observed in both cohorts. We conclude that similar profiles are present in both cohorts indicating that it is not the neutralizing antibody response per se that determines the outcome of infection. These data will provide useful information for future HCV vaccine design.


Assuntos
Hepacivirus , Hepatite C , Anticorpos Neutralizantes , Formação de Anticorpos , Anticorpos Anti-Hepatite C , Humanos , Proteínas do Envelope Viral
5.
PNAS Nexus ; 1(1): pgac024, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35529317

RESUMO

Dabie bandavirus (previously severe fever with thrombocytopenia syndrome virus; SFTSV), is an emerging tick-borne bunyavirus responsible for severe fever with thrombocytopenia syndrome (SFTS), a disease with high case fatality that is characterized by high fever, thrombocytopenia, and potentially lethal hemorrhagic manifestations. Currently, neither effective therapeutic strategies nor approved vaccines exist for SFTS. Therefore, there remains a pressing need to better understand the pathogenesis of the disease and to identify therapeutic strategies to ameliorate SFTS outcomes. Using a type I interferon (IFN)-deficient mouse model, we investigated the viral tropism, disease kinetics, and the role of the virulence factor nonstructural protein (NSs) in SFTS. Ly6C+ MHCII+ cells in the lymphatic tissues were identified as an important target cell for SFTSV. Advanced SFTS was characterized by significant migration of inflammatory leukocytes, notably neutrophils, into the lymph node and spleen, however, these cells were not required to orchestrate the disease phenotype. The development of SFTS was associated with significant upregulation of proinflammatory cytokines, including high levels of IFN-γ and IL-6 in the serum, lymph node, and spleen. Humoral immunity generated by inoculation with delNSs SFTSV was 100% protective. Importantly, NSs was critical to the inhibition of the host IFNɣ response or downstream IFN-stimulated gene production and allowed for the establishment of severe disease. Finally, therapeutic but not prophylactic use of anti-IL-6 antibodies significantly increased the survival of mice following SFTSV infection and, therefore, this treatment modality presents a novel therapeutic strategy for treating severe SFTS.

6.
PLoS Biol ; 19(2): e3001091, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33630831

RESUMO

The recent emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the underlying cause of Coronavirus Disease 2019 (COVID-19), has led to a worldwide pandemic causing substantial morbidity, mortality, and economic devastation. In response, many laboratories have redirected attention to SARS-CoV-2, meaning there is an urgent need for tools that can be used in laboratories unaccustomed to working with coronaviruses. Here we report a range of tools for SARS-CoV-2 research. First, we describe a facile single plasmid SARS-CoV-2 reverse genetics system that is simple to genetically manipulate and can be used to rescue infectious virus through transient transfection (without in vitro transcription or additional expression plasmids). The rescue system is accompanied by our panel of SARS-CoV-2 antibodies (against nearly every viral protein), SARS-CoV-2 clinical isolates, and SARS-CoV-2 permissive cell lines, which are all openly available to the scientific community. Using these tools, we demonstrate here that the controversial ORF10 protein is expressed in infected cells. Furthermore, we show that the promising repurposed antiviral activity of apilimod is dependent on TMPRSS2 expression. Altogether, our SARS-CoV-2 toolkit, which can be directly accessed via our website at https://mrcppu-covid.bio/, constitutes a resource with considerable potential to advance COVID-19 vaccine design, drug testing, and discovery science.


Assuntos
Vacinas contra COVID-19 , COVID-19/diagnóstico , COVID-19/virologia , Genética Reversa , SARS-CoV-2/genética , Células A549 , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Chlorocebus aethiops , Códon , Humanos , Hidrazonas/farmacologia , Camundongos , Morfolinas/farmacologia , Fases de Leitura Aberta , Plasmídeos/genética , Pirimidinas/farmacologia , Serina Endopeptidases/metabolismo , Células Vero , Proteínas Virais/metabolismo
7.
Viruses ; 12(4)2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272808

RESUMO

Toscana virus (TOSV) is a Phlebovirus in the Phenuiviridae family, order Bunyavirales, found in the countries surrounding the Mediterranean. TOSV is an important cause of seasonal acute meningitis and encephalitis within its range. Here, we determined the full sequence of the TOSV strain 1500590, a lineage A virus obtained from an infected patient (Marseille, 2007) and used this in combination with other sequence information to construct functional cDNA plasmids encoding the viral L, M, and S antigenomic sequences under the control of the T7 RNA promoter to recover recombinant viruses. Importantly, resequencing identified two single nucleotide changes to a TOSV reference genome, which, when corrected, restored functionality to the polymerase L and made it possible to recover infectious recombinant TOSV (rTOSV) from cDNA, as well as establish a minigenome system. Using reverse genetics, we produced an NSs-deletant rTOSV and also obtained viruses expressing reporter genes instead of NSs. The availability of such a system assists investigating questions that require genetic manipulation of the viral genome, such as investigations into replication and tropism, and beyond these fundamental aspects, also the development of novel vaccine design strategies.


Assuntos
Genoma Viral , Genética Reversa/métodos , Vírus da Febre do Flebótomo Napolitano/genética , Células A549 , Humanos , Febre por Flebótomos/virologia , Regiões Promotoras Genéticas , Vírus da Febre do Flebótomo Napolitano/classificação , Proteínas Virais/genética
8.
Parasit Vectors ; 12(1): 384, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31366369

RESUMO

BACKGROUND: Cache Valley virus (CVV; Bunyavirales, Peribunyaviridae) is a mosquito-borne arbovirus endemic in North America. Although severe diseases are mainly observed in pregnant ruminants, CVV has also been recognized as a zoonotic pathogen that can cause fatal encephalitis in humans. Human exposures to CVV and its related subtypes occur frequently under different ecological conditions in the New World; however, neurotropic disease is rarely reported. High prevalence rates of neutralizing antibodies have been detected among residents in several Latin American cities. However, zoophilic mosquito species involved in the enzootic transmission are unlikely to be responsible for the transmission leading to human exposures to CVV. Mechanisms that lead to frequent human exposures to CVV remain largely unknown. In this study, competence of two anthropophilic mosquitoes, Aedes albopictus and Ae. aegypti, for CVV was determined using per os infection to determine if these species could play a role in the transmission of CVV in the domestic and peridomestic settings of urban and suburban areas. RESULTS: Aedes albopictus were highly susceptible to CVV whereas infection of Ae. aegypti occurred at a significantly lower frequency. Whilst the dissemination rates of CVV were comparable in the two species, the relatively long period to attain maximal infectious titer in Ae. aegypti demonstrated a significant difference in the replication kinetics of CVV in these species. Detection of viral RNA in saliva suggests that both Ae. albopictus and Ae. aegypti are competent vectors for CVV under laboratory conditions. CONCLUSIONS: Differential susceptibility to CVV was observed in Ae. albopictus and Ae. aegypti, reflecting their relatively different capacities for vectoring CVV in nature. The high susceptibility of Ae. albopictus to CVV observed in this study suggests its potential role as an efficient vector for CVV. Complemented by the reports of multiple CVV isolates derived from Ae. albopictus, our finding provides the basis for how the dispersal of Ae. albopictus across the New World may have a significant impact on the transmission and ecology of CVV.


Assuntos
Aedes/virologia , Vírus Bunyamwera/fisiologia , Infecções por Bunyaviridae/transmissão , Mosquitos Vetores/virologia , Zoonoses/transmissão , Zoonoses/virologia , Aedes/fisiologia , Animais , Infecções por Bunyaviridae/virologia , Cidades , Feminino , Humanos , América do Norte , RNA Viral/análise , Saliva/virologia , Carga Viral , Replicação Viral
9.
PLoS Negl Trop Dis ; 12(10): e0006884, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30372452

RESUMO

Orthobunyaviruses such as Cache Valley virus (CVV) and Kairi virus (KRIV) are important animal pathogens. Periodic outbreaks of CVV have resulted in the significant loss of lambs on North American farms, whilst KRIV has mainly been detected in South and Central America with little overlap in geographical range. Vaccines or treatments for these viruses are unavailable. One approach to develop novel vaccine candidates is based on the use of reverse genetics to produce attenuated viruses that elicit immune responses but cannot revert to full virulence. The full genomes of both viruses were sequenced to obtain up to date genome sequence information. Following sequencing, minigenome systems and reverse genetics systems for both CVV and KRIV were developed. Both CVV and KRIV showed a wide in vitro cell host range, with BHK-21 cells a suitable host cell line for virus propagation and titration. To develop attenuated viruses, the open reading frames of the NSs proteins were disrupted. The recombinant viruses with no NSs protein expression induced the production of type I interferon (IFN), indicating that for both viruses NSs functions as an IFN antagonist and that such attenuated viruses could form the basis for attenuated viral vaccines. To assess the potential for reassortment between CVV and KRIV, which could be relevant during vaccination campaigns in areas of overlap, we attempted to produce M segment reassortants by reverse genetics. We were unable to obtain such viruses, suggesting that it is an unlikely event.


Assuntos
Infecções por Bunyaviridae/imunologia , Interações Hospedeiro-Patógeno , Orthobunyavirus/genética , Orthobunyavirus/imunologia , Vírus Reordenados/genética , Vírus Reordenados/imunologia , Genética Reversa/métodos , Animais , Infecções por Bunyaviridae/virologia , Linhagem Celular , Técnicas de Inativação de Genes , Genoma Viral , Especificidade de Hospedeiro , Evasão da Resposta Imune , Imunidade Inata , Orthobunyavirus/crescimento & desenvolvimento , Vírus Reordenados/crescimento & desenvolvimento , Análise de Sequência de DNA , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/imunologia , Vacinas Virais/genética , Vacinas Virais/isolamento & purificação
10.
Parasit Vectors ; 11(1): 519, 2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30236148

RESUMO

BACKGROUND: Cache Valley virus (CVV) is a mosquito-borne orthobunyavirus endemic in North America. The virus is an important agricultural pathogen leading to abortion and embryonic lethality in ruminant species, especially sheep. The importance of CVV in human public health has recently increased because of the report of severe neurotropic diseases. However, mosquito species responsible for transmission of the virus to humans remain to be determined. In this study, vector competence of three Culex species mosquitoes of public health importance, Culex pipiens, Cx. tarsalis and Cx. quinquefasciatus, was determined in order to identify potential bridge vector species responsible for the transmission of CVV from viremic vertebrate hosts to humans. RESULTS: Variation of susceptibility to CVV was observed among selected Culex species mosquitoes tested in this study. Per os infection resulted in the establishment of infection and dissemination in Culex tarsalis, whereas Cx. pipiens and Cx. quinquefasciatus were highly refractory to CVV. Detection of viral RNA in saliva collected from infected Cx. tarsalis provided evidence supporting its role as a competent vector. CONCLUSIONS: Our study provided further understanding of the transmission cycles of CVV and identifies Cx. tarsalis as a competent vector.


Assuntos
Vírus Bunyamwera/fisiologia , Infecções por Bunyaviridae/transmissão , Culex/virologia , Mosquitos Vetores/virologia , Doenças dos Ovinos/transmissão , Animais , Infecções por Bunyaviridae/virologia , Chlorocebus aethiops , Feminino , Humanos , Masculino , América do Norte , Saúde Pública , RNA Viral/isolamento & purificação , Saliva/virologia , Ovinos , Doenças dos Ovinos/virologia , Especificidade da Espécie , Células Vero
11.
Bioconjug Chem ; 29(4): 1091-1101, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29382188

RESUMO

Mimicry of the binding interface of antibody-antigen interactions using peptide-based modulators (i.e., epitope mimics) has promising applications for vaccine design. These epitope mimics can be synthesized in a streamlined and straightforward fashion, thereby allowing for high-throughput analysis. The design of epitope mimics is highly influenced by their spatial configuration and structural conformation. It is widely assumed that for proper mimicry sufficient conformational constraints have to be implemented. This paper describes the synthesis of bromide derivatives functionalized with a flexible TEG linker equipped with a thiol-moiety that could be used to support cyclic or linear peptides. The cyclic and linear epitope mimics were covalently conjugated via the free thiol-moiety on maleimide-activated plate surfaces. The resulting covalent, uniform, and oriented coated surface of cyclic or linear epitope mimics were subjected to an ELISA to investigate the effect of peptide cyclization with respect to mimicry of an antigen-antibody interaction of the HCV E2 glycoprotein. To the best of our knowledge, the benefit of cyclized peptides over linear peptides has been clearly demonstrated here for the first time. Cyclic epitope mimics, and not the linear epitope mimics, demonstrated specificity toward their monoclonal antibodies HC84.1 and V3.2, respectively. The described strategy for the construction of epitope mimics shows potential for high-throughput screening of key binding residues by simply changing the amino acid sequences within synthetic peptides. In this way, leucine-438 has been identified as a key binding residue for binding monoclonal antibody V3.2.


Assuntos
Hepacivirus/metabolismo , Mimetismo Molecular , Peptídeos Cíclicos/química , Vacinas Sintéticas/imunologia , Proteínas do Envelope Viral/imunologia , Vacinas contra Hepatite Viral/imunologia , Alquilação , Sequência de Aminoácidos , Anticorpos Monoclonais/imunologia , Especificidade de Anticorpos , Ensaio de Imunoadsorção Enzimática , Epitopos/imunologia , Ensaios de Triagem em Larga Escala , Polietilenoglicóis/química , Homologia de Sequência de Aminoácidos
12.
J Virol ; 90(16): 7456-7468, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27279607

RESUMO

UNLABELLED: Hepatitis C virus (HCV) enters cells via interactions with several host factors, a key one being that between the viral E2 envelope glycoprotein and the CD81 receptor. We previously identified E2 tryptophan residue 420 (W420) as an essential CD81-binding residue. However, the importance of W420 in the context of the native virion is unknown, as those previous studies predate the infectious HCV cell culture (cell culture-derived HCV [HCVcc]) system. Here, we introduced four separate mutations (F, Y, A, or R) at position 420 within the infectious HCVcc JFH-1 genome and characterized their effects on the viral life cycle. While all mutations reduced E2-CD81 binding, only two (W420A and W420R) reduced HCVcc infectivity. Further analyses of mutants with hydrophobic residues (F or Y) found that interactions with the receptors SR-BI and CD81 were modulated, which in turn determined the viral uptake route. Both mutant viruses were significantly less dependent on SR-BI, and its lipid transfer activity, for virus entry. Furthermore, these viruses were resistant to the drug erlotinib, which targets epidermal growth factor receptor (EGFR) (a host cofactor for HCV entry) and also blocks SR-BI-dependent high-density lipoprotein (HDL)-mediated enhancement of virus entry. Together, our data indicate a model where an alteration at position 420 causes a subtle change in the E2 conformation that prevents interaction with SR-BI and increases accessibility to the CD81-binding site, in turn favoring a particular internalization route. These results further show that a hydrophobic residue with a strong preference for tryptophan at position 420 is important, both functionally and structurally, to provide an additional hydrophobic anchor to stabilize the E2-CD81 interaction. IMPORTANCE: Hepatitis C virus (HCV) is a leading cause of liver disease, causing up to 500,000 deaths annually. The first step in the viral life cycle is the entry process. This study investigates the role of a highly conserved residue, tryptophan residue 420, of the viral glycoprotein E2 in this process. We analyzed the effect of changing this residue in the virus and confirmed that this region is important for binding to the CD81 receptor. Furthermore, alteration of this residue modulated interactions with the SR-BI receptor, and changes to these key interactions were found to affect the virus internalization route involving the host cofactor EGFR. Our results also show that the nature of the amino acid at this position is important functionally and structurally to provide an anchor point to stabilize the E2-CD81 interaction.


Assuntos
Aminoácidos/metabolismo , Hepacivirus/fisiologia , Proteínas do Envelope Viral/metabolismo , Ligação Viral , Substituição de Aminoácidos , Aminoácidos/genética , Linhagem Celular , Análise Mutacional de DNA , Hepacivirus/genética , Humanos , Modelos Biológicos , Mutagênese Sítio-Dirigida , Receptores Depuradores Classe B/metabolismo , Tetraspanina 28/metabolismo , Proteínas do Envelope Viral/genética , Internalização do Vírus
13.
J Biol Chem ; 281(12): 8062-71, 2006 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-16407231

RESUMO

Homomeric 5-hydroxytryptamine type 3A receptors (5-HT3ARs) have a single channel conductance (gamma) below the resolution of single channel recording (966 +/- 75 fS, estimated by variance analysis). By contrast, heteromeric 5-HT3A/B and nicotinic acetylcholine receptors (nAChRs) have picosiemen range gamma values. In this study, single channel recordings revealed that replacement of cytoplasmic membrane-associated (MA) helix arginine 432 (-4'), 436 (0'), and 440 (4') residues by 5-HT3B (-4'Gln, 0'Asp, and 4'Ala) residues increases gamma to 36.5 +/- 1.0 pS. The 0' residue makes the most substantial contribution to gamma of the 5-HT3AR. Replacement of 0'Arg by aspartate, glutamate (alpha7 nAChR subunit MA 0'), or glutamine (beta2 subunit MA 0') increases gamma to the resolvable range (>6 pS). By contrast, replacement of 0'Arg by phenylalanine (alpha4 subunit MA 0') reduced gamma to 416 +/- 107 fS. In reciprocal experiments with alpha4beta2 nAChRs (gamma = 31.3 +/- 0.8 pS), replacement of MA 0' residues by arginine in alpha4beta2(Q443R) and alpha4(F588R)beta2 reduced gamma slightly. By contrast, the gamma of double mutant alpha4(F588R)beta2(Q443R) was halved. The MA -4' and 4' residues also influenced gamma of 5-HT3ARs. Replacement of nAChR alpha4 or beta2 MA 4' residues by arginine made current density negligible. By contrast, replacement of both -4' residues by arginine produced functional nAChRs with substantially reduced gamma (11.4 +/- 0.5 pS). Homology models of the 5-HT3A and alpha4beta2 nAChRs against Torpedo nAChR revealed MA -4', 0', and 4' residues within five intracellular portals. This locus may be a common determinant of ion conduction throughout the Cys loop receptor family.


Assuntos
Citoplasma/metabolismo , Receptores Nicotínicos/química , Serotonina/química , Sequência de Aminoácidos , Animais , Arginina/química , Cálcio/química , Linhagem Celular , Membrana Celular/metabolismo , Cisteína/química , DNA/química , DNA Complementar/metabolismo , Eletrofisiologia , Humanos , Íons , Modelos Moleculares , Modelos Estatísticos , Dados de Sequência Molecular , Mutação , Técnicas de Patch-Clamp , Conformação Proteica , Estrutura Terciária de Proteína , Ratos , Homologia de Sequência de Aminoácidos , Fatores de Tempo , Torpedo , Transfecção
14.
Nature ; 424(6946): 321-4, 2003 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-12867984

RESUMO

5-hydroxytryptamine type 3 (5-HT3) receptors are cation-selective transmitter-gated ion channels of the Cys-loop superfamily. The single-channel conductance of human recombinant 5-HT3 receptors assembled as homomers of 5-HT3A subunits, or heteromers of 5-HT3A and 5-HT3B subunits, are markedly different, being 0.4 pS (refs 6, 9) and 16 pS (ref. 7), respectively. Paradoxically, the channel-lining M2 domain of the 5-HT3A subunit would be predicted to promote cation conduction, whereas that of the 5-HT3B subunit would not. Here we describe a determinant of single-channel conductance that can explain these observations. By constructing chimaeric 5-HT3A and 5-HT3B subunits we identified a region (the 'HA-stretch') within the large cytoplasmic loop of the receptor that markedly influences channel conductance. Replacement of three arginine residues unique to the HA-stretch of the 5-HT3A subunit by their 5-HT3B subunit counterparts increased single-channel conductance 28-fold. Significantly, ultrastructural studies of the Torpedo nicotinic acetylcholine receptor indicate that the key residues might frame narrow openings that contribute to the permeation pathway. Our findings solve the conundrum of the anomalously low conductance of homomeric 5-HT3A receptors and indicate an important function for the HA-stretch in Cys-loop transmitter-gated ion channels.


Assuntos
Citoplasma/metabolismo , Canais Iônicos/química , Canais Iônicos/metabolismo , Receptores de Serotonina/química , Receptores de Serotonina/metabolismo , Sequência de Aminoácidos , Arginina/genética , Arginina/metabolismo , Cátions/metabolismo , Sequência Conservada , Cisteína/metabolismo , Condutividade Elétrica , Eletrofisiologia , Imunofluorescência , Humanos , Canais Iônicos/genética , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Subunidades Proteicas , Receptores de Serotonina/genética , Receptores 5-HT3 de Serotonina , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo
15.
Mol Cell Neurosci ; 21(1): 38-50, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12359150

RESUMO

The ability of differing subunit combinations of 5-HT3 receptors to form functional cell surface receptors was analyzed by a variety of approaches. The results revealed that 5-HT3 receptor assembly occurred within the endoplasmic reticulum (ER) and involved the interaction with chaperone proteins. The 5-HT3A subunit could assemble into functional homomeric receptors that were expressed on the cell surface. In contrast, the 5-HT3B subunit did not exhibit 5-hydroxytryptamine binding or function, could not assemble, and was efficiently retained and degraded within the ER. However, upon the coexpression of the 5-HT3A subunit, 5-HT3B could be "rescued" from the ER and transported to the cell surface to form functional heteromeric receptors with distinct functional characteristics. In support of the existence of homomeric 5-HT3 receptors in vivo, recombinantly expressed 5-HT3A receptors were capable of clustered cell surface expression in cortical neurons.


Assuntos
Membrana Celular/metabolismo , Proteínas de Choque Térmico , Chaperonas Moleculares/metabolismo , Sistema Nervoso/metabolismo , Neurônios/metabolismo , Receptores de Serotonina/biossíntese , Animais , Animais Recém-Nascidos , Células COS , Calnexina/metabolismo , Proteínas de Transporte/metabolismo , Células Cultivadas , Córtex Cerebral/metabolismo , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Glicosilação , Imuno-Histoquímica , Oócitos , Polímeros/metabolismo , Transporte Proteico/fisiologia , Ensaio Radioligante , Ratos , Receptores de Serotonina/genética , Receptores 5-HT3 de Serotonina , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA