Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Brain ; 147(2): 414-426, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37703328

RESUMO

Facioscapulohumeral dystrophy (FSHD) has a unique genetic aetiology resulting in partial chromatin relaxation of the D4Z4 macrosatellite repeat array on 4qter. This D4Z4 chromatin relaxation facilitates inappropriate expression of the transcription factor DUX4 in skeletal muscle. DUX4 is encoded by a retrogene that is embedded within the distal region of the D4Z4 repeat array. In the European population, the D4Z4 repeat array is usually organized in a single array that ranges between 8 and 100 units. D4Z4 chromatin relaxation and DUX4 derepression in FSHD is most often caused by repeat array contraction to 1-10 units (FSHD1) or by a digenic mechanism requiring pathogenic variants in a D4Z4 chromatin repressor like SMCHD1, combined with a repeat array between 8 and 20 units (FSHD2). With a prevalence of 1.5% in the European population, in cis duplications of the D4Z4 repeat array, where two adjacent D4Z4 arrays are interrupted by a spacer sequence, are relatively common but their relationship to FSHD is not well understood. In cis duplication alleles were shown to be pathogenic in FSHD2 patients; however, there is inconsistent evidence for the necessity of an SMCHD1 mutation for disease development. To explore the pathogenic nature of these alleles we compared in cis duplication alleles in FSHD patients with or without pathogenic SMCHD1 variant. For both groups we showed duplication-allele-specific DUX4 expression. We studied these alleles in detail using pulsed-field gel electrophoresis-based Southern blotting and molecular combing, emphasizing the challenges in the characterization of these rearrangements. Nanopore sequencing was instrumental to study the composition and methylation of the duplicated D4Z4 repeat arrays and to identify the breakpoints and the spacer sequence between the arrays. By comparing the composition of the D4Z4 repeat array of in cis duplication alleles in both groups, we found that specific combinations of proximal and distal repeat array sizes determine their pathogenicity. Supported by our algorithm to predict pathogenicity, diagnostic laboratories should now be furnished to accurately interpret these in cis D4Z4 repeat array duplications, alleles that can easily be missed in routine settings.


Assuntos
Distrofia Muscular Facioescapuloumeral , Humanos , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/metabolismo , Distrofia Muscular Facioescapuloumeral/patologia , Alelos , Proteínas Cromossômicas não Histona/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Cromatina
2.
Genome Res ; 33(9): 1439-1454, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37798116

RESUMO

Fascioscapulohumeral muscular dystrophy (FSHD) is caused by a unique genetic mechanism that relies on contraction and hypomethylation of the D4Z4 macrosatellite array on the Chromosome 4q telomere allowing ectopic expression of the DUX4 gene in skeletal muscle. Genetic analysis is difficult because of the large size and repetitive nature of the array, a nearly identical array on the 10q telomere, and the presence of divergent D4Z4 arrays scattered throughout the genome. Here, we combine nanopore long-read sequencing with Cas9-targeted enrichment of 4q and 10q D4Z4 arrays for comprehensive genetic analysis including determination of the length of the 4q and 10q D4Z4 arrays with base-pair resolution. In the same assay, we differentiate 4q from 10q telomeric sequences, determine A/B haplotype, identify paralogous D4Z4 sequences elsewhere in the genome, and estimate methylation for all CpGs in the array. Asymmetric, length-dependent methylation gradients were observed in the 4q and 10q D4Z4 arrays that reach a hypermethylation point at approximately 10 D4Z4 repeat units, consistent with the known threshold of pathogenic D4Z4 contractions. High resolution analysis of individual D4Z4 repeat methylation revealed areas of low methylation near the CTCF/insulator region and areas of high methylation immediately preceding the DUX4 transcriptional start site. Within the DUX4 exons, we observed a waxing/waning methylation pattern with a 180-nucleotide periodicity, consistent with phased nucleosomes. Targeted nanopore sequencing complements recently developed molecular combing and optical mapping approaches to genetic analysis for FSHD by adding precision of the length measurement, base-pair resolution sequencing, and quantitative methylation analysis.


Assuntos
Distrofia Muscular Facioescapuloumeral , Sequenciamento por Nanoporos , Humanos , Distrofia Muscular Facioescapuloumeral/genética , Metilação de DNA , Processamento de Proteína Pós-Traducional , Cromossomos Humanos Par 4/genética , Cromossomos Humanos Par 4/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo
3.
Eur J Hum Genet ; 31(6): 663-673, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36935420

RESUMO

The major determinant of disease severity in Duchenne muscular dystrophy (DMD) or milder Becker muscular dystrophy (BMD) is whether the dystrophin gene (DMD) mutation truncates the mRNA reading frame or allows expression of a partially functional protein. However, even in the complete absence of dystrophin, variability in disease severity is observed, and candidate gene studies have implicated several genes as modifiers. Here we present the largest genome-wide search to date for loci influencing severity in N = 419 DMD patients. Availability of subjects for such studies is quite limited, leading to modest sample sizes, which present a challenge for GWAS design. We have therefore taken special steps to minimize heterogeneity within our dataset at the DMD locus itself, taking a novel approach to mutation classification to effectively exclude the possibility of residual dystrophin expression, and utilized statistical methods that are well adapted to smaller sample sizes, including the use of a novel linear regression-like residual for time to ambulatory loss and the application of evidential statistics for the GWAS approach. Finally, we applied an unbiased in silico pipeline, utilizing functional genomic datasets to explore the potential impact of the best supported SNPs. In all, we obtained eight SNPs (out of 1,385,356 total) with posterior probability of trait-marker association (PPLD) ≥ 0.4, representing six distinct loci. Our analysis prioritized likely non-coding SNP regulatory effects on six genes (ETAA1, PARD6G, GALNTL6, MAN1A1, ADAMTS19, and NCALD), each with plausibility as a DMD modifier. These results support both recurrent and potentially new pathways for intervention in the dystrophinopathies.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Humanos , Distrofina/genética , Distrofina/metabolismo , Estudo de Associação Genômica Ampla , Éxons , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/genética , Gravidade do Paciente , Caminhada , Antígenos de Superfície
4.
bioRxiv ; 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36824722

RESUMO

Fascioscapulohumeral muscular dystrophy (FSHD) is caused by a unique genetic mechanism that relies on contraction and hypomethylation of the D4Z4 macrosatellite array on the chromosome 4q telomere allowing ectopic expression of the DUX4 gene in skeletal muscle. Genetic analysis is difficult due to the large size and repetitive nature of the array, a nearly identical array on the 10q telomere, and the presence of divergent D4Z4 arrays scattered throughout the genome. Here, we combine nanopore long-read sequencing with Cas9-targeted enrichment of 4q and 10q D4Z4 arrays for comprehensive genetic analysis including determination of the length of the 4q and 10q D4Z4 arrays with base-pair resolution. In the same assay, we differentiate 4q from 10q telomeric sequences, determine A/B haplotype, identify paralogous D4Z4 sequences elsewhere in the genome, and estimate methylation for all CpGs in the array. Asymmetric, length-dependent methylation gradients were observed in the 4q and 10q D4Z4 arrays that reach a hypermethylation point at approximately 10 D4Z4 repeat units, consistent with the known threshold of pathogenic D4Z4 contractions. High resolution analysis of individual D4Z4 repeat methylation revealed areas of low methylation near the CTCF/insulator region and areas of high methylation immediately preceding the DUX4 transcriptional start site. Within the DUX4 exons, we observed a waxing/waning methylation pattern with a 180-nucleotide periodicity, consistent with phased nucleosomes. Targeted nanopore sequencing complements recently developed molecular combing and optical mapping approaches to genetic analysis for FSHD by adding precision of the length measurement, base-pair resolution sequencing, and quantitative methylation analysis.

5.
Hum Mutat ; 43(4): 511-528, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35165973

RESUMO

DMD pathogenic variants for Duchenne and Becker muscular dystrophy are detectable with high sensitivity by standard clinical exome analyses of genomic DNA. However, up to 7% of DMD mutations are deep intronic and analysis of muscle-derived RNA is an important diagnostic step for patients who have negative genomic testing but abnormal dystrophin expression in muscle. In this study, muscle biopsies were evaluated from 19 patients with clinical features of a dystrophinopathy, but negative clinical DMD mutation analysis. Reverse transcription-polymerase chain reaction or high-throughput RNA sequencing methods identified 19 mutations with one of three pathogenic pseudoexon types: deep intronic point mutations, deletions or insertions, and translocations. In association with point mutations creating intronic splice acceptor sites, we observed the first examples of DMD pseudo 3'-terminal exon mutations causing high efficiency transcription termination within introns. This connection between splicing and premature transcription termination is reminiscent of U1 snRNP-mediating telescripting in sustaining RNA polymerase II elongation across large genes, such as DMD. We propose a novel classification of three distinct types of mutations identifiable by muscle RNA analysis, each of which differ in potential treatment approaches. Recognition and appropriate characterization may lead to therapies directed toward full-length dystrophin expression for some patients.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Distrofina/genética , Humanos , Íntrons/genética , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Mutação , Sítios de Splice de RNA
6.
Hum Gene Ther ; 32(21-22): 1346-1359, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34060935

RESUMO

Exon skipping therapies for Duchenne muscular dystrophy that restore an open reading frame can be induced by the use of noncoding U7 small nuclear RNA (U7snRNA) modified by an antisense exon-targeting sequence delivered by an adeno-associated virus (AAV) vector. We have developed an AAV vector (AAV9.U7-ACCA) containing four U7snRNAs targeting the splice donor and acceptor sites of dystrophin exon 2, resulting in highly efficient exclusion of DMD exon 2. We assessed the specificity of splice variation induced by AAV9.U7-ACCA delivery in the Dmd exon 2 duplication (Dup2) mouse model through an unbiased RNA-seq approach. Treatment-related effects on pre-mRNA splicing were quantified using local splicing variation (LSV) analysis. Filtering the transcriptome for differences in treatment-related splicing resulted in only 16 candidate off-target LSVs. Only a single candidate off-target LSV was found in both skeletal and cardiac muscle tissue and occurred at a known variable cassette exon. In contrast, four LSVs represented significant on-target correction of Dmd exon 2 splicing and transcriptome analysis showed correction of known dystrophin-deficient gene dysregulation. We conclude that the absence of off-target splicing induced by treatment with the U7-ACCA vector supports the continued clinical development of this approach.


Assuntos
Terapia Genética , Distrofia Muscular de Duchenne , Animais , Distrofina/genética , Distrofina/metabolismo , Éxons/genética , Camundongos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Splicing de RNA/genética , RNA Nuclear Pequeno/genética
7.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33883280

RESUMO

Genome erosion is a frequently observed result of relaxed selection in insect nutritional symbionts, but it has rarely been studied in defensive mutualisms. Solitary beewolf wasps harbor an actinobacterial symbiont of the genus Streptomyces that provides protection to the developing offspring against pathogenic microorganisms. Here, we characterized the genomic architecture and functional gene content of this culturable symbiont using genomics, transcriptomics, and proteomics in combination with in vitro assays. Despite retaining a large linear chromosome (7.3 Mb), the wasp symbiont accumulated frameshift mutations in more than a third of its protein-coding genes, indicative of incipient genome erosion. Although many of the frameshifted genes were still expressed, the encoded proteins were not detected, indicating post-transcriptional regulation. Most pseudogenization events affected accessory genes, regulators, and transporters, but "Streptomyces philanthi" also experienced mutations in central metabolic pathways, resulting in auxotrophies for biotin, proline, and arginine that were confirmed experimentally in axenic culture. In contrast to the strong A+T bias in the genomes of most obligate symbionts, we observed a significant G+C enrichment in regions likely experiencing reduced selection. Differential expression analyses revealed that-compared to in vitro symbiont cultures-"S. philanthi" in beewolf antennae showed overexpression of genes for antibiotic biosynthesis, the uptake of host-provided nutrients and the metabolism of building blocks required for antibiotic production. Our results show unusual traits in the early stage of genome erosion in a defensive symbiont and suggest tight integration of host-symbiont metabolic pathways that effectively grants the host control over the antimicrobial activity of its bacterial partner.


Assuntos
Antibacterianos/biossíntese , Genoma Bacteriano , Pseudogenes , Streptomyces/genética , Vespas/microbiologia , Animais , Antenas de Artrópodes/metabolismo , Feminino , Chaperonas Moleculares/metabolismo , Streptomyces/metabolismo , Simbiose
8.
Mol Genet Genomic Med ; 9(4): e1619, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33624941

RESUMO

BACKGROUND: Myotonic dystrophy type 1 (DM1) is caused by CTG repeat expansions in the DMPK gene and is the most common form of muscular dystrophy. Patients can have long delays from onset to diagnosis, since clinical signs and symptoms are often nonspecific and overlapping with other disorders. Clinical genetic testing by Southern blot or triplet-primed PCR (TP-PCR) is technically challenging and cost prohibitive for population surveys. METHODS: Here, we present a high throughput, low-cost screening tool for CTG repeat expansions using TP-PCR followed by high resolution melt curve analysis with saturating concentrations of SYBR GreenER dye. RESULTS: We determined that multimodal melt profiles from the TP-PCR assay are a proxy for amplicon length stoichiometry. In a screen of 10,097 newborn blood spots, melt profile analysis accurately reflected the tri-modal distribution of common alleles from 5 to 35 CTG repeats, and identified the premutation and full expansion alleles. CONCLUSION: We demonstrate that robust detection of expanded CTG repeats in a single tube can be achieved from samples derived from specimens with minimal template DNA such as dried blood spots (DBS). This technique is readily adaptable to large-scale testing programs such as population studies and newborn screening programs.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Técnicas de Diagnóstico Molecular/métodos , Distrofia Miotônica/diagnóstico , Desnaturação de Ácido Nucleico , Expansão das Repetições de Trinucleotídeos , Custos e Análise de Custo , Ensaios de Triagem em Larga Escala/economia , Ensaios de Triagem em Larga Escala/normas , Humanos , Técnicas de Diagnóstico Molecular/economia , Técnicas de Diagnóstico Molecular/normas , Distrofia Miotônica/genética , Sensibilidade e Especificidade
9.
Hum Mol Genet ; 30(6): 411-429, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33564861

RESUMO

Gene networks for disorders of social behavior provide the mechanisms critical for identifying therapeutic targets and biomarkers. Large behavioral phenotypic effects of small human deletions make the positive sociality of Williams syndrome (WS) ideal for determining transcriptional networks for social dysfunction currently based on DNA variations for disorders such as autistic spectrum disorder (ASD) and schizophrenia (SCHZ). Consensus on WS networks has been elusive due to the need for larger cohort size, sensitive genome-wide detection and analytic tools. We report a core set of WS network perturbations in a cohort of 58 individuals (34 with typical, 6 atypical deletions and 18 controls). Genome-wide exon-level expression arrays robustly detected changes in differentially expressed gene (DEG) transcripts from WS deleted genes that ranked in the top 11 of 12 122 transcripts, validated by quantitative reverse transcription PCR, RNASeq and western blots. WS DEG's were strictly dosed in the full but not the atypical deletions that revealed a breakpoint position effect on non-deleted CLIP2, a caveat for current phenotypic mapping based on copy number variants. Network analyses tested the top WS DEG's role in the dendritic spine, employing GeneMANIA to harmonize WS DEGs with comparable query gene-sets. The results indicate perturbed actin cytoskeletal signaling analogous to the excitatory dendritic spines. Independent protein-protein interaction analyses of top WS DEGs generated a 100-node graph annotated topologically revealing three interacting pathways, MAPK, IGF1-PI3K-AKT-mTOR/insulin and actin signaling at the synapse. The results indicate striking similarity of WS transcriptional networks to genome-wide association study-based ASD and SCHZ risk suggesting common network dysfunction for these disorders of divergent sociality.


Assuntos
Actinas/metabolismo , Transtorno do Espectro Autista/patologia , Redes Reguladoras de Genes , Fator de Crescimento Insulin-Like I/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Actinas/genética , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Estudos de Casos e Controles , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Fator de Crescimento Insulin-Like I/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Serina-Treonina Quinases TOR/genética
10.
Ann Neurol ; 84(2): 234-245, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30014611

RESUMO

OBJECTIVE: Duchenne muscular dystrophy (DMD) is a severe X-linked recessive disease caused by loss-of-function dystrophin (DMD) mutations in boys, who typically suffer loss of ambulation by age 12. Previously, we reported that coding variants in latent transforming growth factor beta (TGFß)-binding protein 4 (LTBP4) were associated with reduced TGFß signaling and prolonged ambulation (p = 1.0 × 10-3 ) in DMD patients; this result was subsequently replicated by other groups. In this study, we evaluated whether additional DMD modifier genes are observed using whole-genome association in the original cohort. METHODS: We performed a genome-wide association study (GWAS) for single-nucleotide polymorphisms (SNPs) influencing loss of ambulation (LOA) in the same cohort of 253 DMD patients used to detect the candidate association with LTBP4 coding variants. Gene expression and chromatin interaction databases were used to fine-map association signals above the threshold for genome-wide significance. RESULTS: Despite the small sample size, two loci associated with prolonged ambulation met genome-wide significance and were tagged by rs2725797 (chr15, p = 6.6 × 10-9 ) and rs710160 (chr19, p = 4.7 × 10-8 ). Gene expression and chromatin interaction data indicated that the latter SNP tags regulatory variants of LTBP4, whereas the former SNP tags regulatory variants of thrombospondin-1 (THBS1): an activator of TGFß signaling by direct binding to LTBP4 and an inhibitor of proangiogenic nitric oxide signaling. INTERPRETATION: Together with previous evidence implicating LTBP4, the THBS1 modifier locus emphasizes the role that common regulatory variants in gene interaction networks can play in mitigating disease progression in muscular dystrophy. Ann Neurol 2018;84:234-245.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Proteínas de Ligação a TGF-beta Latente/genética , Distrofia Muscular de Duchenne/genética , Polimorfismo de Nucleotídeo Único/genética , Trombospondina 1/genética , Criança , Estudos de Coortes , Genômica , Humanos , Masculino , Distrofia Muscular de Duchenne/diagnóstico , Índice de Gravidade de Doença
11.
Am J Physiol Lung Cell Mol Physiol ; 315(4): L553-L562, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29975102

RESUMO

Eosinophilia (EOS) is an important component of airway inflammation and hyperresponsiveness in allergic reactions including those leading to asthma. Although cigarette smoking (CS) is a significant contributor to long-term adverse outcomes in these lung disorders, there are also the curious reports of its ability to produce acute suppression of inflammatory responses including EOS through poorly understood mechanisms. One possibility is that proinflammatory processes are suppressed by nicotine in CS acting through nicotinic receptor α7 (α7). Here we addressed the role of α7 in modulating EOS with two mouse models of an allergic response: house dust mites (HDM; Dermatophagoides sp.) and ovalbumin (OVA). The influence of α7 on EOS was experimentally resolved in wild-type mice or in mice in which a point mutation of the α7 receptor (α7E260A:G) selectively restricts normal signaling of cellular responses. RNA analysis of alveolar macrophages and the distal lung epithelium indicates that normal α7 function robustly impacts gene expression in the epithelium to HDM and OVA but to different degrees. Notable was allergen-specific α7 modulation of Ccl11 and Ccl24 (eotaxins) expression, which was enhanced in HDM but suppressed in OVA EOS. CS suppressed EOS induced by both OVA and HDM, as well as the inflammatory genes involved, regardless of α7 genotype. These results suggest that EOS in response to HDM or OVA is through signaling pathways that are modulated in a cell-specific manner by α7 and are distinct from CS suppression.


Assuntos
Fumar Cigarros/imunologia , Pulmão/efeitos dos fármacos , Ovalbumina/toxicidade , Eosinofilia Pulmonar/prevenção & controle , Pyroglyphidae/patogenicidade , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Animais , Citocinas/metabolismo , Feminino , Pulmão/imunologia , Pulmão/metabolismo , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Masculino , Camundongos , Eosinofilia Pulmonar/etiologia , Eosinofilia Pulmonar/metabolismo , Eosinofilia Pulmonar/patologia , Receptor Nicotínico de Acetilcolina alfa7/genética
12.
Hum Genet ; 137(2): 151-160, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29362874

RESUMO

The human MN blood group antigens are isoforms of glycophorin A (GPA) encoded by the gene, GYPA, and are the most abundant erythrocyte sialoglycoproteins. The distribution of MN antigens has been widely studied in human populations yet the evolutionary and/or demographic factors affecting population variation remain elusive. While the primary function of GPA is yet to be discovered, it serves as the major binding site for the 175-kD erythrocyte-binding antigen (EB-175) of the malarial parasite, Plasmodium falciparum, a major selective pressure in recent human history. More specifically, exon two of GYPA encodes the receptor-binding ligand to which P. falciparum binds. Accordingly, there has been keen interest in understanding what impact, if any, natural selection has had on the distribution of variation in GYPA and exon two in particular. To this end, we resequenced GYPA in individuals sampled from both P. falciparum endemic (sub-Saharan Africa and South India) and non-endemic (Europe and East Asia) regions of the world. Observed patterns of variation suggest that GYPA has been subject to balancing selection in populations living in malaria endemic areas and in Europeans, but no such evidence was found in samples from East Asia, Oceania, and the Americas. These results are consistent with malaria acting as a selective pressure on GYPA, but also suggest that another selective force has resulted in a similar pattern of variation in Europeans. Accordingly, GYPA has perhaps a more complex evolutionary history, wherein on a global scale, spatially varying selective pressures have governed its natural history.


Assuntos
Antígenos de Protozoários/genética , Glicoforinas/genética , Malária Falciparum/genética , Proteínas de Protozoários/genética , Seleção Genética/genética , Antígenos de Neoplasias/genética , Sítios de Ligação , Antígenos de Grupos Sanguíneos/genética , Anidrase Carbônica IX/genética , Europa (Continente) , Éxons/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Índia , Ligantes , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidade , Ligação Proteica/genética
14.
PLoS One ; 12(12): e0189664, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29244830

RESUMO

OBJECTIVES: The collagen VI related muscular dystrophies (COL6-RD), Ullrich congenital muscular dystrophy (UCMD) and Bethlem myopathy (BM) are among the most common congenital muscular dystrophies and are characterized by distal joint laxity and a combination of distal and proximal joint contractures. Inheritance can be dominant negative (DN) or recessive depending on the type and location of the mutation. DN mutations allow incorporation of abnormal chains into secreted tetramers and are the most commonly identified mutation type in COL6-RD. Null alleles (nonsense, frameshift, and large deletions) do not allow incorporation of abnormal chains and act recessively. To better define the pathways disrupted by mutations in collagen VI, we have used a transcriptional profiling approach with RNA-Seq to identify differentially expressed genes in COL6-RD individuals from controls. METHODS: RNA-Seq allows precise detection of all expressed transcripts in a sample and provides a tool for quantification of expression data on a genomic scale. We have used RNA-Seq to identify differentially expressed genes in cultured dermal fibroblasts from 13 COL6-RD individuals (8 dominant negative and 5 null) and 6 controls. To better assess the transcriptional changes induced by abnormal collagen VI in the extracellular matrix (ECM); we compared transcriptional profiles from subjects with DN mutations and subjects with null mutations to transcriptional profiles from controls. RESULTS: Differentially expressed transcripts between COL6-RD and control fibroblasts include upregulation of ECM components and downregulation of factors controlling matrix remodeling and repair. DN and null samples are differentiated by downregulation of genes involved with DNA replication and repair in null samples. CONCLUSIONS: Differentially expressed genes identified here may help identify new targets for development of therapies and biomarkers to assess the efficacy of treatments.


Assuntos
Colágeno Tipo VI/genética , Contratura/genética , Distrofias Musculares/congênito , Esclerose/genética , Transcriptoma/genética , Adolescente , Adulto , Criança , Pré-Escolar , Contratura/diagnóstico , Contratura/fisiopatologia , Matriz Extracelular/genética , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Masculino , Distrofias Musculares/diagnóstico , Distrofias Musculares/genética , Distrofias Musculares/fisiopatologia , Mutação , Esclerose/diagnóstico , Esclerose/fisiopatologia , Deleção de Sequência/genética , Adulto Jovem
15.
PLoS One ; 12(11): e0187773, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29117258

RESUMO

Cigarette smoking (CS) is a principal contributor to a spectrum of devastating lung diseases whose occurrence and severity may vary between individuals and not appear for decades after prolonged use. One explanation for the variability and delay in disease onset is that nicotine, the addictive component of CS, acts through the ionotropic nicotinic acetylcholine receptor (nAChR) alpha7 (α7) to modulate anti-inflammatory protection. In this study we measured the impact α7 signaling has on the mouse distal lung response to side-stream CS exposure for mice of the control genotype (α7G) and those in which the α7-receptor signaling mechanisms are restricted by point mutation (α7E260A:G). Flow cytometry results show that after CS there is an increase in a subset of CD11c (CD11chi) alveolar macrophages (AMs) and histology reveals an increase in these cells within the alveolar space in both genotypes although the α7E260A:G AMs tend to accumulate into large aggregates rather than more widely distributed solitary cells common to the α7G lung after CS. Changes to lung morphology with CS in both genotypes included increased tissue cavitation due to alveolar expansion and bronchial epithelium dysplasia in part associated with altered club cell morphology. RNA-Seq analysis revealed changes in epithelium gene expression after CS are largely independent of the α7-genotype. However, the α7E260A:G genotype did reveal some unique variations to transcript expression of gene sets associated with immune responsiveness and macrophage recruitment, hypoxia, genes encoding mitochondrial respiration complex I and extracellular fibrillary matrix proteins (including alterations to fibrotic deposits in the α7G proximal airway bronchioles after CS). These results suggest α7 has a central role in modulating the response to chronic CS that could include altering susceptibility to associated lung diseases including fibrosis and cancer.


Assuntos
Fumar Cigarros/genética , Células Epiteliais/imunologia , Macrófagos Alveolares/imunologia , Transcriptoma , Receptor Nicotínico de Acetilcolina alfa7/genética , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Fumar Cigarros/imunologia , Fumar Cigarros/patologia , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/imunologia , Células Epiteliais/patologia , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/imunologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Pulmão/imunologia , Pulmão/patologia , Macrófagos Alveolares/patologia , Masculino , Camundongos , Camundongos Transgênicos , Modelos Animais , Mutação , Transdução de Sinais , Receptor Nicotínico de Acetilcolina alfa7/imunologia
16.
PLoS One ; 12(4): e0175367, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28384302

RESUMO

Nicotine modulates multiple inflammatory responses in the lung through the nicotinic acetylcholine receptor subtype alpha7 (α7). Previously we reported that α7 modulates both the hematopoietic and epithelium responses in the lung to the bacterial inflammogen, lipopolysaccharide (LPS). Here we apply immunohistochemistry, flow cytometry and RNA-Seq analysis of isolated distal lung epithelium to further define α7-expression and function in this tissue. Mouse lines were used that co-express a bicistronic tau-green fluorescent protein (tGFP) as a reporter of α7 (α7G) expression and that harbor an α7 with a specific point mutation (α7E260A:G) that selectively uncouples it from cell calcium-signaling mechanisms. The tGFP reporter reveals strong cell-specific α7-expression by alveolar macrophages (AM), Club cells and ATII cells. Ciliated cells do not express detectible tGFP, but their numbers decrease by one-third in the α7E260A:G lung compared to controls. Transcriptional comparisons (RNA-Seq) between α7G and α7E260A:G enriched lung epithelium 24 hours after challenge with either intra-nasal (i.n.) saline or LPS reveals a robust α7-genotype impact on both the stasis and inflammatory response of this tissue. Overall the α7E260A:G lung epithelium exhibits reduced inflammatory cytokine/chemokine expression to i.n. LPS. Transcripts specific to Club cells (e.g., CC10, secretoglobins and Muc5b) or to ATII cells (e.g., surfactant proteins) were constitutively decreased in in the α7E260A:G lung, but they were strongly induced in response to i.n. LPS. Protein analysis applying immunohistochemistry and ELISA also revealed α7-associated differences suggested by RNA-Seq including altered mucin protein 5b (Muc5b) accumulation in the α7E260A:G bronchia, that in some cases appeared to form airway plugs, and a substantial increase in extracellular matrix deposits around α7E260A:G airway bronchia linings that was not seen in controls. Our results show that α7 is an important modulator of normal gene expression stasis and the response to an inhaled inflammogen in the distal lung epithelium. Further, when normal α7 signaling is disrupted, changes in lung gene expression resemble those associated with long-term lung pathologies seen in humans who use inhaled nicotine products.


Assuntos
Lipopolissacarídeos/farmacologia , Pulmão/efeitos dos fármacos , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Animais , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Imuno-Histoquímica , Pulmão/citologia , Pulmão/metabolismo , Camundongos , Transcrição Gênica/efeitos dos fármacos
19.
Ann Neurol ; 77(4): 668-74, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25612243

RESUMO

OBJECTIVE: Exon-skipping therapies aim to convert Duchenne muscular dystrophy (DMD) into less severe Becker muscular dystrophy (BMD) by altering pre-mRNA splicing to restore an open reading frame, allowing translation of an internally deleted and partially functional dystrophin protein. The most common single exon deletion-exon 45 (Δ45)-may theoretically be treated by skipping of either flanking exon (44 or 46). We sought to predict the impact of these by assessing the clinical severity in dystrophinopathy patients. METHODS: Phenotypic data including clinical diagnosis, age at wheelchair use, age at loss of ambulation, and presence of cardiomyopathy were analyzed from 41 dystrophinopathy patients containing equivalent in-frame deletions. RESULTS: As expected, deletions of either exons 45 to 47 (Δ45-47) or exons 45 to 48 (Δ45-48) result in BMD in 97% (36 of 37) of subjects. Unexpectedly, deletion of exons 45 to 46 (Δ45-46) is associated with the more severe DMD phenotype in 4 of 4 subjects despite an in-frame transcript. Notably, no patients with a deletion of exons 44 to 45 (Δ44-45) were found within the United Dystrophinopathy Project database, and this mutation has only been reported twice before, which suggests an ascertainment bias attributable to a very mild phenotype. INTERPRETATION: The observation that Δ45-46 patients have typical DMD suggests that the conformation of the resultant protein may result in protein instability or altered binding of critical partners. We conclude that in DMD patients with Δ45, skipping of exon 44 and multiexon skipping of exons 46 and 47 (or exons 46-48) are better potential therapies than skipping of exon 46 alone.


Assuntos
Bases de Dados Genéticas , Éxons/genética , Terapia Genética/métodos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Fenótipo , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Estudos de Coortes , Humanos , Masculino , Pessoa de Meia-Idade , Distrofia Muscular de Duchenne/diagnóstico , Valor Preditivo dos Testes , Resultado do Tratamento , Adulto Jovem
20.
Nat Med ; 20(9): 992-1000, 2014 09.
Artigo em Inglês | MEDLINE | ID: mdl-25108525

RESUMO

Most mutations that truncate the reading frame of the DMD gene cause loss of dystrophin expression and lead to Duchenne muscular dystrophy. However, amelioration of disease severity has been shown to result from alternative translation initiation beginning in DMD exon 6 that leads to expression of a highly functional N-truncated dystrophin. Here we demonstrate that this isoform results from usage of an internal ribosome entry site (IRES) within exon 5 that is glucocorticoid inducible. We confirmed IRES activity by both peptide sequencing and ribosome profiling in muscle from individuals with minimal symptoms despite the presence of truncating mutations. We generated a truncated reading frame upstream of the IRES by exon skipping, which led to synthesis of a functional N-truncated isoform in both human subject-derived cell lines and in a new DMD mouse model, where expression of the truncated isoform protected muscle from contraction-induced injury and corrected muscle force to the same level as that observed in control mice. These results support a potential therapeutic approach for patients with mutations within the 5' exons of DMD.


Assuntos
Distrofina/genética , Éxons , Distrofia Muscular de Duchenne/genética , Biossíntese de Proteínas , Isoformas de Proteínas/genética , Sequência de Aminoácidos , Animais , Distrofina/química , Humanos , Camundongos , Dados de Sequência Molecular , Distrofia Muscular de Duchenne/patologia , Isoformas de Proteínas/química , Isoformas de Proteínas/fisiologia , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA