Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Infect ; 75(1): 20-25, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28435086

RESUMO

OBJECTIVES: To establish risk factors for Clostridium difficile colonization among hospitalized patients in England. METHODS: Patients admitted to elderly medicine wards at three acute hospitals in England were recruited to a prospective observational study. Participants were asked to provide a stool sample as soon as possible after enrolment and then weekly during their hospital stay. Samples were cultured for C. difficile before ribotyping and toxin detection by PCR. A multivariable logistic regression model of risk factors for C. difficile colonization was fitted from univariable risk factors significant at the p < 0.05 level. RESULTS: 410/727 participants submitted ≥1 stool sample and 40 (9.8%) carried toxigenic C. difficile in the first sample taken. Ribotype 106 was identified three times and seven other ribotypes twice. No ribotype 027 strains were identified. Independent predictors of colonization were previous C. difficile infection (OR 4.53 (95% C.I. 1.33-15.48) and malnutrition (MUST score ≥2) (OR 3.29 (95% C.I. 1.47-7.35)). Although C. difficile colonised patients experienced higher 90-day mortality, colonization was not an independent risk for death. CONCLUSIONS: In a non-epidemic setting patients who have previously had CDI and have a MUST score of ≥2 are at increased risk of C. difficile colonization and could be targeted for active surveillance to prevent C. difficile transmission.


Assuntos
Toxinas Bacterianas/biossíntese , Clostridioides difficile/isolamento & purificação , Infecções por Clostridium/epidemiologia , Infecção Hospitalar/epidemiologia , Enterotoxinas/biossíntese , Hospitalização , Idoso de 80 Anos ou mais , Antibacterianos/uso terapêutico , Clostridioides difficile/classificação , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/genética , Infecções por Clostridium/tratamento farmacológico , Infecções por Clostridium/microbiologia , Infecções por Clostridium/mortalidade , Infecção Hospitalar/microbiologia , Diarreia/epidemiologia , Inglaterra/epidemiologia , Fezes/microbiologia , Feminino , Humanos , Modelos Logísticos , Masculino , Reação em Cadeia da Polimerase , Estudos Prospectivos , Ribotipagem , Fatores de Risco
2.
Antioxid Redox Signal ; 23(5): 358-74, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26135714

RESUMO

AIMS: The NADPH oxidase (NOX) family of enzymes catalyzes the formation of reactive oxygen species (ROS). NOX enzymes not only have a key role in a variety of physiological processes but also contribute to oxidative stress in certain disease states. To date, while numerous small molecule inhibitors have been reported (in particular for NOX2), none have demonstrated inhibitory activity in vivo. As such, there is a need for the identification of improved NOX inhibitors to enable further evaluation of the biological functions of NOX enzymes in vivo as well as the therapeutic potential of NOX inhibition. In this study, both the in vitro and in vivo pharmacological profiles of GSK2795039, a novel NOX2 inhibitor, were characterized in comparison with other published NOX inhibitors. RESULTS: GSK2795039 inhibited both the formation of ROS and the utilization of the enzyme substrates, NADPH and oxygen, in a variety of semirecombinant cell-free and cell-based NOX2 assays. It inhibited NOX2 in an NADPH competitive manner and was selective over other NOX isoforms, xanthine oxidase, and endothelial nitric oxide synthase enzymes. Following systemic administration in mice, GSK2795039 abolished the production of ROS by activated NOX2 enzyme in a paw inflammation model. Furthermore, GSK2795039 showed activity in a murine model of acute pancreatitis, reducing the levels of serum amylase triggered by systemic injection of cerulein. INNOVATION AND CONCLUSIONS: GSK2795039 is a novel NOX2 inhibitor that is the first small molecule to demonstrate inhibition of the NOX2 enzyme in vivo.


Assuntos
Aminopiridinas/farmacologia , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Glicoproteínas de Membrana/metabolismo , NADPH Oxidases/metabolismo , Sulfonamidas/farmacologia , Aminopiridinas/química , Animais , Células Cultivadas , Inibidores Enzimáticos/uso terapêutico , Masculino , Glicoproteínas de Membrana/antagonistas & inibidores , Camundongos Endogâmicos C57BL , NADPH Oxidase 2 , NADPH Oxidases/antagonistas & inibidores , Pancreatite/tratamento farmacológico , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Sulfonamidas/química
4.
Methods Mol Biol ; 565: 239-57, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19551366

RESUMO

Traditionally, the objective of high-throughput screening (HTS) has been to identify compounds that interact with a defined target protein as the starting point for a chemistry lead optimisation programme. To enable this it has become commonplace to express the drug target in a recombinant expression system and use this reagent as the source of the biological material to support the HTS campaign. In this chapter we describe an alternative HTS methodology with the objective of identifying compounds that mediate a change in a defined physiological end point as a consequence of compound activity in human primary cells. Rather than screening at a defined molecular target, such "phenotypic" screens permit the identification of compounds that act at any target protein within the cell to regulate the end point under study. As an example of such a screen we will describe an HTS campaign to identify compounds that promote the production of the cytokine interferon-alpha from human blood peripheral mononuclear cells (PBMCs) isolated from whole blood. We describe the procedures required to obtain and purify human PBMCs and the electrochemiluminescence-based assay technology used to detect interferon-alpha and highlight the challenges associated with this screening paradigm.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Células Cultivadas , Eletrofisiologia/métodos , Humanos , Leucócitos Mononucleares/metabolismo , Medições Luminescentes , Modelos Teóricos
5.
Biochem J ; 419(1): 65-73, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19061480

RESUMO

Identification of small-molecule inhibitors by high-throughput screening necessitates the development of robust, reproducible and cost-effective assays. The assay approach adopted may utilize isolated proteins or whole cells containing the target of interest. To enable protein-based assays, the baculovirus expression system is commonly used for generation and isolation of recombinant proteins. We have applied the baculovirus system into a cell-based assay format using NIK [NF-kappaB (nuclear factor kappaB)-inducing kinase] as a paradigm. We illustrate the use of the insect-cell-based assay in monitoring the activity of NIK against its physiological downstream substrate IkappaB (inhibitor of NF-kappaB) kinase-1. The assay was robust, yielding a signal/background ratio of 2:1 and an average Z' value of >0.65 when used to screen a focused compound set. Using secondary assays to validate a selection of the hits, we identified a compound that (i) was non-cytotoxic, (ii) interacted directly with NIK, and (iii) inhibited lymphotoxin-induced NF-kappaB p52 translocation to the nucleus. The insect cell assay represents a novel approach to monitoring kinase inhibition, with major advantages over other cell-based systems including ease of use, amenability to scale-up, protein expression levels and the flexibility to express a number of proteins by infecting with numerous baculoviruses.


Assuntos
Bioensaio/métodos , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Western Blotting , Linhagem Celular , Humanos , Quinase I-kappa B/metabolismo , Modelos Biológicos , NF-kappa B/metabolismo , Subunidade p52 de NF-kappa B/metabolismo , Fosforilação , Spodoptera , Quinase Induzida por NF-kappaB
6.
Bioorg Med Chem Lett ; 15(21): 4666-70, 2005 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-16153829

RESUMO

Imidazole-based structures of p38 inhibitors served as a starting point for the design of JNK3 inhibitors. Construction of a 6,7-dihydro-5H-pyrrolo[1,2-a]imidazole scaffold led to the synthesis of the (S)-enantiomers, which exhibited p38/JNK3 IC50 ratio of up to 10 and were up to 20 times more potent inhibitors of JNK3 than the relevant (R)-enantiomers. The JNK3 inhibitory potency correlated well with inhibition of c-Jun phosphorylation and neuroprotective properties of the compounds in low K+-induced cell death of rat cerebellar granule neurones.


Assuntos
Proteína Quinase 10 Ativada por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/síntese química , Animais , Morte Celular/efeitos dos fármacos , Cerebelo/citologia , Imidazóis , Neurônios/citologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/farmacologia , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-jun/metabolismo , Ratos , Estereoisomerismo , Relação Estrutura-Atividade , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA