RESUMO
Healthcare workers (HCWs) are at increased risk of SARS-CoV-2 infection. Despite widespread vaccination, some HCWs develop frequent symptomatic infection. We hypothesised that HCWs with frequent symptomatic COVID-19 have impaired T and B cell mediated immunity to SARS-CoV-2. Vaccinated HCWs with no prior COVID infection (n = 9), asymptomatic recent infection (n = 10), and frequent recent infection (n = 15) were recruited from a longitudinal HCW cohort study. Whole blood stimulation with SARS-CoV-2 variants (Wuhan, B.1.617, BA.2, BA.2.75, BA.4/5, XBB.1.5, BQ.1.1) was performed, with IFNγ and IL-2 responses, total IgG produced, and anti-Spike antibody neutralising capacity measured. Frequent infections had similar IFNγ and IL-2 responses to the never infected group, with significantly higher responses in the asymptomatic group. The frequent cohort had higher IgG responses to Delta and BA.4/5 and higher neutralising capacity against Omicron variants. An immune signature of blunted IL-2 and IFNγ in frequent infections may identify HCWs at increased risk of further infection.
RESUMO
Immunosuppressive treatment in patients with rheumatic diseases can maintain disease remission but also increase risk of infection. Their response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination is frequently blunted. In this study we evaluated the effect of immunosuppression exposure on humoral and T cell immune responses to SARS-CoV-2 infection and vaccination in two distinct cohorts of patients; one during acute SARS-CoV-2 infection and 3 months later during convalescence, and another prior to SARS-CoV-2 vaccination, with follow up sampling 6 weeks after vaccination. Results were compared between rituximab-exposed (in previous 6 months), immunosuppression-exposed (in previous 3 months), and non-immunosuppressed groups. The immune cell phenotype was defined by flow cytometry and ELISA. Antigen specific T cell responses were estimated using a whole blood stimulation interferon-γ release assay. A focused post-vaccine assessment of rituximab-treated patients using high dimensional spectral cytometry was conducted. Acute SARS-CoV-2 infection was characterised by T cell lymphopenia, and a reduction in NK cells and naïve CD4 and CD8 cells, without any significant differences between immunosuppressed and non-immunosuppressed patient groups. Conversely, activated CD4 and CD8 cell counts increased in non-immunosuppressed patients with acute SARS-CoV-2 infection but this response was blunted in the presence of immunosuppression. In rituximab-treated patients, antigen-specific T cell responses were preserved in SARS-CoV-2 vaccination, but patients were unable to mount an appropriate humoral response.
Assuntos
Vacinas contra COVID-19 , COVID-19 , Rituximab , SARS-CoV-2 , Vacinação , Humanos , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , SARS-CoV-2/imunologia , Masculino , Feminino , Pessoa de Meia-Idade , Vacinas contra COVID-19/imunologia , Rituximab/uso terapêutico , Rituximab/farmacologia , Idoso , Adulto , Terapia de Imunossupressão , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico , Anticorpos Antivirais/imunologia , Imunidade Humoral/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Imunidade Celular/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologiaRESUMO
BACKGROUND: Chronic spontaneous urticaria (CSU) is a common, debilitating skin disorder characterized by recurring episodes of raised, itchy and sometimes painful wheals lasting longer than 6 weeks. CSU is mediated by mast cells which are absent from peripheral blood. However, lineage-CD34hiCD117int/hiFcεRI+ cells in blood have previously been shown to represent a mast cell precursor. METHODS: We enumerated FcεRI-, FcεRI+ and FcεRIhi lineage-CD34+CD117+ cells using flow cytometry in blood of patients with CSU (n = 55), including 12 patients receiving omalizumab and 43 not receiving omalizumab (n = 43). Twenty-two control samples were studied. Disease control and patient response to omalizumab was evaluated using the urticaria control test. We performed single-cell RNA sequencing (scRNA-Seq) on lineage-CD34hiCD117hi blood cells from a subset of patients with CSU (n = 8) and healthy controls (n = 4). RESULTS: CSU patients had more lineage-CD34+CD117+FcεRI+ blood cells than controls. Lineage-CD34+CD117+FcεRI+ cells were significantly higher in patients with CSU who had an objective clinical response to omalizumab when compared to patients who had poor disease control 90 days after initiation of omalizumab. scRNA-Seq revealed that lineage-CD34+CD117+FcεRI+ cells contained both lymphoid and myeloid progenitor lineages, with omalizumab responsive patients having proportionally more myeloid progenitors. The myeloid progenitor lineage contained small numbers of true mast cell precursors along with more immature FcεRI- and FcεRI+ myeloid progenitors. CONCLUSION: Increased blood CD34+CD117+FcεRI+ cells may reflect enhanced bone marrow egress in the setting of CSU. High expression of these cells strongly predicts better clinical responses to the anti-IgE therapy, omalizumab.
Assuntos
Antígenos CD34 , Urticária Crônica , Omalizumab , Proteínas Proto-Oncogênicas c-kit , Receptores de IgE , Humanos , Urticária Crônica/tratamento farmacológico , Masculino , Feminino , Antígenos CD34/metabolismo , Receptores de IgE/metabolismo , Adulto , Pessoa de Meia-Idade , Omalizumab/uso terapêutico , Proteínas Proto-Oncogênicas c-kit/metabolismo , Resultado do Tratamento , Antialérgicos/uso terapêutico , Antialérgicos/farmacologia , Biomarcadores , Células-Tronco/metabolismo , Mastócitos/imunologia , Mastócitos/metabolismo , Prognóstico , Idoso , Imunofenotipagem , Anticorpos Anti-Idiotípicos/uso terapêutico , Anticorpos Anti-Idiotípicos/farmacologiaRESUMO
BACKGROUND AND OBJECTIVES: Epstein-Barr virus (EBV) has been strongly implicated in the pathogenesis of multiple sclerosis (MS). Despite this, there are no routinely used tests to measure cellular response to EBV. In this study, we analyzed the cellular response to EBV nuclear antigen-1 (EBNA-1) in people with MS (pwMS) using a whole blood assay. METHODS: This cross-sectional study took place in a dedicated MS clinic in a university hospital. We recruited healthy controls, people with epilepsy (PWE), and pwMS taking a range of disease-modifying treatments (DMTs) including natalizumab, anti-CD20 monoclonal antibodies (mAbs), dimethyl fumarate (DMF), and also treatment naïve. Whole blood samples were stimulated with commercially available PepTivator EBNA1 peptides and a control virus-cytomegalovirus (CMV) peptide. We recorded the cellular response to stimulation with both interferon gamma (IFN-γ) and interleukin-2 (IL-2). We also compared the cellular responses to EBNA1 with IgG responses to EBNA1, viral capsid antigen (VCA), and EBV viral load. RESULTS: We recruited 86 pwMS, with relapsing remitting MS, in this group, and we observed a higher level of cellular response recorded with IFN-γ (0.79 IU/mL ± 1.36) vs healthy controls (0.29 IU/mL ± 0.90, p = 0.0048) and PWE (0.17 IU/mL ± 0.33, p = 0.0088). Treatment with either anti-CD20 mAbs (0.28 IU/mL ± 0.57) or DMF (0.07 IU/mL ± 0.15) resulted in a cellular response equivalent to control levels or in PWE (p = 0.26). The results of recording IL-2 response were concordant with IFN-γ: with suppression also seen with anti-CD20 mAbs and DMF. By contrast, we did not record any differential effect of DMTs on the levels of IgG to either EBNA-1 or VCA. Nor did we observe differences in cellular response to cytomegalovirus between groups. DISCUSSION: This study demonstrates how testing and recording the cellular response to EBNA-1 in pwMS may be beneficial. EBNA-1 stimulation of whole blood samples produced higher levels of IFN-γ and IL-2 in pwMS compared with controls and PWE. In addition, we show a differential effect of currently available DMTs on this response. The functional assay deployed uses whole blood samples with minimal preprocessing suggesting that employment as a treatment response measure in clinical trials targeting EBV may be possible.
Assuntos
Antígenos Nucleares do Vírus Epstein-Barr , Herpesvirus Humano 4 , Esclerose Múltipla , Humanos , Anticorpos Antivirais , Antígenos Virais , Proteínas do Capsídeo , Estudos Transversais , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/imunologia , Antígenos Nucleares do Vírus Epstein-Barr/imunologia , Herpesvirus Humano 4/imunologia , Imunidade Celular , Imunoglobulina G , Interferon gama , Interleucina-2 , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/virologiaRESUMO
Introduction: As the COVID-19 pandemic moves towards endemic status, testing strategies are being de-escalated. A rapid and effective point of care test (POCT) assessment of SARS-CoV-2 immune responses can inform clinical decision-making and epidemiological monitoring of the disease. This cross-sectional seroprevalence study of anti-SARS-CoV-2 antibodies in Irish healthcare workers assessed how rapid anti-SARS-CoV-2 antibody testing can be compared to a standard laboratory assay, discusses its effectiveness in neutralisation assessment and its uses into the future of the pandemic. Methods: A point of care lateral flow immunoassay (LFA) detecting anti-SARS-CoV-2 spike (S)-receptor binding domain (RBD) neutralising antibodies (Healgen SARS-CoV-2 neutralising Antibody Rapid Test Cassette) was compared to the Roche Elecsys/-S anti-SARS-CoV-2 antibody assays and an in vitro surrogate neutralisation assay. A correlation between anti-spike (S), anti-nucleocapsid (N) titres, and in vitro neutralisation was also assessed. Results: 1,777 serology samples were tested using Roche Elecsys/-S anti-SARS-CoV-2 assays to detect total anti-N/S antibodies. 1,562 samples were tested using the POC LFA (including 50 negative controls), and 90 samples were tested using an in vitro ACE2-RBD binding inhibition surrogate neutralisation assay. The POCT demonstrated 97.7% sensitivity, 100% specificity, a positive predictive value (PPV) of 100%, and a negative predictive value (NPV) of 61% in comparison to the commercial assay. Anti-S antibody titres determined by the Roche assay stratified by the POC LFA result groups demonstrated statistically significant differences between the "Positive" and "Negative" LFA groups (p < 0.0001) and the "Weak Positive" and "Positive" LFA groups (p < 0.0001). No statistically significant difference in ACE2-RBD binding inhibition was demonstrated when stratified by the LFA POC results. A positive, statistically significant correlation was demonstrated between the in vitro pseudo-neutralisation assay results and anti-S antibody titres (rho 0.423, p < 0.001) and anti-N antibody titres (rho = 0.55, p < 0.0001). Conclusion: High sensitivity, specificity, and PPV were demonstrated for the POC LFA for the detection of anti-S-RBD antibodies in comparison to the commercial assay. The LFA was not a reliable determinant of the neutralisation capacity of identified antibodies. POC LFA are useful tools in sero-epidemiology settings, pandemic preparedness and may act as supportive tools in treatment decisions through the rapid identification of anti-Spike antibodies.
Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Sistemas Automatizados de Assistência Junto ao Leito , Pandemias , Estudos Soroepidemiológicos , Enzima de Conversão de Angiotensina 2 , Estudos Transversais , Anticorpos Antivirais , Imunoensaio/métodosRESUMO
Excessive inflammation-associated coagulation is a feature of infectious diseases, occurring in such conditions as bacterial sepsis and COVID-19. It can lead to disseminated intravascular coagulation, one of the leading causes of mortality worldwide. Recently, type I interferon (IFN) signaling has been shown to be required for tissue factor (TF; gene name F3) release from macrophages, a critical initiator of coagulation, providing an important mechanistic link between innate immunity and coagulation. The mechanism of release involves type I IFN-induced caspase-11 which promotes macrophage pyroptosis. Here we find that F3 is a type I IFN-stimulated gene. Furthermore, F3 induction by lipopolysaccharide (LPS) is inhibited by the anti-inflammatory agents dimethyl fumarate (DMF) and 4-octyl itaconate (4-OI). Mechanistically, inhibition of F3 by DMF and 4-OI involves suppression of Ifnb1 expression. Additionally, they block type I IFN- and caspase-11-mediated macrophage pyroptosis, and subsequent TF release. Thereby, DMF and 4-OI inhibit TF-dependent thrombin generation. In vivo, DMF and 4-OI suppress TF-dependent thrombin generation, pulmonary thromboinflammation, and lethality induced by LPS, E. coli, and S. aureus, with 4-OI additionally attenuating inflammation-associated coagulation in a model of SARS-CoV-2 infection. Our results identify the clinically approved drug DMF and the pre-clinical tool compound 4-OI as anticoagulants that inhibit TF-mediated coagulopathy via inhibition of the macrophage type I IFN-TF axis.
Assuntos
COVID-19 , Interferon Tipo I , Trombose , Humanos , Anticoagulantes , Tromboplastina , Fumarato de Dimetilo/farmacologia , Fumarato de Dimetilo/uso terapêutico , Escherichia coli , Inflamação , Lipopolissacarídeos , Staphylococcus aureus , Trombina , SARS-CoV-2 , Macrófagos , CaspasesRESUMO
Background: The PRECISE Study, a multi-phase cross-sectional seroprevalence study of anti-SARS-CoV-2 antibodies in Irish healthcare workers (HCW) investigated: (1) risk factors for SARS-CoV-2 seropositivity, (2) the durability of antibody responses in a highly vaccinated HCW cohort, and (3) the neutralisation capacity of detected antibodies, prior to booster COVID-19 vaccination. Materials and methods: Serology samples were collected across two hospital sites in November 2021 and analysed using the Roche Elecsys Anti-SARS-CoV-2/Elecsys-S Anti-SARS-CoV-2 assays to detect anti-nucleocapsid (N) and anti-spike (S) antibodies respectively. Paired serology results from prior study phases were used to analyse changes in individual HCW serostatus over time. Risk-factors for SARS-CoV-2 infection were assessed for demographic and work-related factors. Antibody neutralisation capacity was assessed in a subset of samples via an in vitro ACE2 binding enzyme-linked immunosorbent assay. Results: 2,344 HCW samples were analysed. Median age was 43 years (IQR 33-50) with 80.5% (n = 1,886) female participants. Irish (78.9%, n = 1,850) and Asian (12.3%, n = 288) were the most commonly reported ethnicities. Nursing/midwifery (39.3%, n = 922) was the most common job role. 97.7% of participants were fully vaccinated, with Pfizer (81.1%, n = 1,902) and AstraZeneca (16.1%, n = 377) the most common vaccines received. Seroprevalence for anti-SARS-CoV-2 antibodies indicating prior infection was 23.4%, of these 33.6% represented previously undiagnosed infections. All vaccinated participants demonstrated positive anti-S antibodies and in those with paired serology, no individual demonstrated loss of previously positive anti-S status below assay threshold for positivity. Interval loss of anti-N antibody positivity was demonstrated in 8.8% of previously positive participants with paired results. Risk factors for SARS-CoV-2 seropositivity suggestive of previous infection included age 18-29 years (aRR 1.50, 95% CI 1.19-1.90, p < 0.001), India as country of birth (aRR 1.35, 95% CI 1.01-1.73, p = 0.036), lower education level (aRR 1.35, 95% CI 1.11-1.66, p = 0.004) and HCA job role (aRR 2.12, 95% CI 1.51-2.95, p < 0.001). Antibody neutralisation varied significantly by anti-SARS-CoV-2 antibody status, with highest levels noted in those anti-N positive, in particular those with vaccination plus previous SARS-CoV-2 infection. Conclusion: All vaccinated HCWs maintained anti-S positivity prior to COVID-19 booster vaccination, however anti-N positivity was more dynamic over time. Antibody neutralisation capacity was highest in participants with COVID-19 vaccination plus prior SARS-CoV-2 infection.
RESUMO
BACKGROUND: Prolonged recovery is common after acute SARS-CoV-2 infection; however, the pathophysiological mechanisms underpinning Long COVID syndrome remain unknown. VWF/ADAMTS-13 imbalance, dysregulated angiogenesis, and immunothrombosis are hallmarks of acute COVID-19. We hypothesized that VWF/ADAMTS-13 imbalance persists in convalescence together with endothelial cell (EC) activation and angiogenic disturbance. Additionally, we postulate that ongoing immune cell dysfunction may be linked to sustained EC and coagulation activation. PATIENTS AND METHODS: Fifty patients were reviewed at a minimum of 6 weeks following acute COVID-19. ADAMTS-13, Weibel Palade Body (WPB) proteins, and angiogenesis-related proteins were assessed and clinical evaluation and immunophenotyping performed. Comparisons were made with healthy controls (n = 20) and acute COVID-19 patients (n = 36). RESULTS: ADAMTS-13 levels were reduced (p = 0.009) and the VWF-ADAMTS-13 ratio was increased in convalescence (p = 0.0004). Levels of platelet factor 4 (PF4), a putative protector of VWF, were also elevated (p = 0.0001). A non-significant increase in WPB proteins Angiopoietin-2 (Ang-2) and Osteoprotegerin (OPG) was observed in convalescent patients and WPB markers correlated with EC parameters. Enhanced expression of 21 angiogenesis-related proteins was observed in convalescent COVID-19. Finally, immunophenotyping revealed significantly elevated intermediate monocytes and activated CD4+ and CD8+ T cells in convalescence, which correlated with thrombin generation and endotheliopathy markers, respectively. CONCLUSION: Our data provide insights into sustained EC activation, dysregulated angiogenesis, and VWF/ADAMTS-13 axis imbalance in convalescent COVID-19. In keeping with the pivotal role of immunothrombosis in acute COVID-19, our findings support the hypothesis that abnormal T cell and monocyte populations may be important in the context of persistent EC activation and hemostatic dysfunction during convalescence.
Assuntos
COVID-19 , Hemostáticos , Proteína ADAMTS13 , Angiopoietina-2 , COVID-19/complicações , Convalescença , Humanos , Neovascularização Patológica , Osteoprotegerina , Fator Plaquetário 4 , SARS-CoV-2 , Trombina , Fator de von Willebrand/metabolismo , Síndrome de COVID-19 Pós-AgudaRESUMO
Background: The current coronavirus disease 2019 (COVID-19) pandemic began in Ireland with the first confirmed positive case in March 2020. In the early stages of the pandemic clinicians and researchers in two affiliated Dublin hospitals identified the need for a COVID-19 biobanking initiative to support and enhance research into the disease. Through large scale analysis of clinical, regional, and genetic characteristics of COVID-19 patients, biobanks have helped identify, and so protect, at risk patient groups The STTAR Bioresource has been created to collect and store data and linked biological samples from patients with SARS-CoV-2 infection and healthy and disease controls. Aim: The primary objective of this study is to build a biobank, to understand the clinical characteristics and natural history of COVID-19 infection with the long-term goal of research into improved disease understanding, diagnostic tests and treatments. Methods: This is a prospective dual-site cohort study across two tertiary acute university teaching hospitals. Patients are recruited from inpatient wards or outpatient clinics. Patients with confirmed COVID-19 infection as well as healthy and specific disease control groups are recruited. Biological samples are collected and a case report form detailing demographic and medical background is entered into the bespoke secure online Dendrite database. Impact: The results of this study will be used to inform national and international strategy on health service provision and disease management related to COVID-19. In common with other biobanks, study end points evolve over time as new research questions emerge. They currently include patient survival, occurrence of severe complications of the disease or its therapy, occurrence of persistent symptoms following recovery from the acute illness and vaccine responses.
RESUMO
SARS-CoV-2 infection causes a wide spectrum of disease severity. Identifying the immunological characteristics of severe disease and the risk factors for their development are important in the management of COVID-19. This study aimed to identify and rank clinical and immunological features associated with progression to severe COVID-19 in order to investigate an immunological signature of severe disease. One hundred and eight patients with positive SARS-CoV-2 PCR were recruited. Routine clinical and laboratory markers were measured, as well as myeloid and lymphoid whole-blood immunophenotyping and measurement of the pro-inflammatory cytokines IL-6 and soluble CD25. All analysis was carried out in a routine hospital diagnostic laboratory. Univariate analysis demonstrated that severe disease was most strongly associated with elevated CRP and IL-6, loss of DLA-DR expression on monocytes and CD10 expression on neutrophils. Unbiased machine learning demonstrated that these four features were strongly associated with severe disease, with an average prediction score for severe disease of 0.925. These results demonstrate that these four markers could be used to identify patients developing severe COVID-19 and allow timely delivery of therapeutics.
RESUMO
OBJECTIVE: The disease-modifying therapies (DMT), dimethyl fumarate (DMF) and fingolimod (FTY) improve the outcomes in multiple sclerosis (MS) by reducing relapses and numbers and volume of lesions. They mediate their effects through reduction of immune reactivation, which may potentially lead to lymphopaenia and increased risk of infections. Previous studies have examined the effects of these therapies on lymphocyte subsets; however, the in vivo effects on circulating lymphocyte proliferation require further elucidation. The aim of this study was to determine the effects of DMF and FTY on T-cell proliferation in patients with MS. METHOD: We examined T-cell lymphocyte proliferation and lymphocyte subsets in ten patients (five on DMF, five on FTY) before starting DMT and again 4 to 11 months after being maintained on DMT. RESULTS: In the FTY-treated group, the mean percentage proliferation was significantly lower using both assays (PHA assay mean percentage change - 51.2 ± 25.97, p < 0.05; anti-CD3/CD28 assay mean percentage change - 39.74 ± 27.85, p < 0.05). There was no statistical difference in T-cell lymphocyte proliferation in the DMF-treated group for either assay (PHA, p = 0.316; anti-CD3/CD28, p = 0.373). CONCLUSIONS: This pilot study suggests that the T-lymphocytes of patients on FTY have an abnormal proliferation response as well as being reduced in the circulation.
Assuntos
Cloridrato de Fingolimode , Esclerose Múltipla , Humanos , Cloridrato de Fingolimode/efeitos adversos , Fumarato de Dimetilo/efeitos adversos , Esclerose Múltipla/tratamento farmacológico , Antígenos CD28 , Projetos Piloto , Imunossupressores/efeitos adversos , Resultado do Tratamento , Linfócitos , Proliferação de CélulasRESUMO
INTRODUCTION: Serological SARS-CoV-2 assays have an important role in guiding the pandemic response. This research aimed to compare the performance of 2 antinucleocapsid assays. METHODS: Serum from 49 HCWs was analysed at baseline and 6 months using the Abbott diagnostics SARS-CoV-2 IgG assay and the Roche Diagnostics Elecsys Anti-SARS-CoV-2 total antibody assay. RESULTS: At baseline, 14/49 participants (29%) demonstrated antibody reactivity using the Abbott assay. At 6 months, 4/14 participants (29%) continued to demonstrate reactivity. A total of 14/49 (29%) participants had detectable antibodies at baseline using the Roche assay. In total, 13/14 (93%) of participants demonstrated antibody reactivity at 6 months. The Abbott assay showed a statistically significant difference in the signal-to-threshold values of baseline reactive samples when repeated at 6 months (p = 0.001). This was not seen with the Roche assay (p = 0.51). CONCLUSION: In this small study, the Roche Diagnostics Elecsys Anti-SARS-CoV-2 total antibody assay appears superior in performance to the Abbott diagnostics SARS-CoV-2 IgG assay in accurately detecting participants with a history of confirmed COVID-19 disease at 6 months follow-up. This finding should be born in mind in the planning of future seroprevalence studies, especially when considering the use of anti-nucleocapsid assays.
Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , COVID-19/diagnóstico , Pessoal de Saúde , Humanos , Imunoglobulina G , Sensibilidade e Especificidade , Estudos SoroepidemiológicosRESUMO
Interactions between circulating tumour cells (CTCs) and platelets are thought to inhibit natural killer(NK)-cell-induced lysis. We attempted to correlate CTC numbers in men with advanced prostate cancer with platelet counts and circulating lymphocyte numbers. Sixty-one ExPeCT trial participants, divided into overweight/obese and normal weight groups on the basis of a BMI ≥ 25 or <25, were randomized to participate or not in a six-month exercise programme. Blood samples at randomization, and at three and six months, were subjected to ScreenCell filtration, circulating platelet counts were obtained, and flow cytometry was performed on a subset of samples (n = 29). CTC count positively correlated with absolute total lymphocyte count (r2 = 0.1709, p = 0.0258) and NK-cell count (r2 = 0.49, p < 0.0001). There was also a positive correlation between platelet count and CTC count (r2 = 0.094, p = 0.0001). Correlation was also demonstrated within the overweight/obese group (n = 123, p < 0.0001), the non-exercise group (n = 79, p = 0.001) and blood draw samples lacking platelet cloaking (n = 128, p < 0.0001). By flow cytometry, blood samples from the exercise group (n = 15) had a higher proportion of CD3+ T-lymphocytes (p = 0.0003) and lower proportions of B-lymphocytes (p = 0.0264) and NK-cells (p = 0.015) than the non-exercise group (n = 14). These findings suggest that CTCs engage in complex interactions with the coagulation cascade and innate immune system during intravascular transit, and they present an attractive target for directed therapy at a vulnerable stage in metastasis.
RESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies are an excellent indicator of past COVID-19 infection. As the COVID-19 pandemic progresses, retained sensitivity over time is an important quality in an antibody assay that is to be used for the purpose of population seroprevalence studies. We compared 5,788 health care worker (HCW) serum samples by using two serological assays (Abbott SARS-CoV-2 anti-nucleocapsid immunoglobulin G (IgG) and Roche anti-SARS-CoV-2 anti-nucleocapsid total antibody) and a subset of samples (all Abbott assay positive or grayzone, n = 485) on Wantai SARS-CoV-2 anti-spike antibody enzyme-linked immunosorbent assay (ELISA). For 367 samples from HCW with a previous PCR-confirmed SARS-CoV-2 infection, we correlated the timing of infection with assay results. Overall, seroprevalence was 4.2% on Abbott and 9.5% on Roche. Of those with previously confirmed infection, 41% (150/367) and 95% (348/367) tested positive on Abbott and Roche, respectively. At 21 weeks (150 days) after confirmed infection, positivity on Abbott started to decline. Roche positivity was retained for the entire study period (33 weeks). Factors associated (P ≤ 0.050) with Abbott seronegativity in those with previous PCR-confirmed infection included sex (odds ratio [OR], 0.30 male ; 95% confidence interval [CI], 0.15 to 0.60), symptom severity (OR 0.19 severe symptoms; 95% CI, 0.05 to 0.61), ethnicity (OR, 0.28 Asian ethnicity; 95% CI, 0.12 to 0.60), and time since PCR diagnosis (OR, 2.06 for infection 6 months previously; 95% CI, 1.01 to 4.30). Wantai detected all previously confirmed infections. In our population, Roche detected antibodies up to at least 7 months after natural infection with SARS-CoV-2. This finding indicates that the Roche total antibody assay is better suited than Abbott IgG assay to population-based studies. Wantai demonstrated high sensitivity, but sample selection was biased. The relationship between serological response and functional immunity to SARS-CoV-2 infection needs to be delineated. IMPORTANCE As the COVID-19 pandemic progresses, retained sensitivity over time is an important quality in an antibody assay that is to be used for the purpose of population seroprevalence studies. There is a relative paucity of published literature in this field to help guide public health specialists when planning seroprevalence studies. In this study, we compared results of 5,788 health care worker blood samples tested by using two assays (Roche and Elecsys, anti-nucleocapsid antibody) and by testing a subset on a third assay (Wantai enzyme-linked immunosorbent assay [ELISA] anti-spike antibody). We found significant differences in the performance of these assays, especially with distance in time from PCR-confirmed COVID-19 infection, and we feel these results may significantly impact the choice of assay for others conducting similar studies.
Assuntos
Anticorpos Antivirais/sangue , Teste Sorológico para COVID-19/métodos , COVID-19/diagnóstico , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto , Estudos Transversais , Ensaio de Imunoadsorção Enzimática , Feminino , Pessoal de Saúde/estatística & dados numéricos , Humanos , Imunoglobulina G/sangue , Masculino , Pessoa de Meia-Idade , Fosfoproteínas/imunologia , Sensibilidade e Especificidade , Estudos Soroepidemiológicos , Adulto JovemRESUMO
BACKGROUND: Up to 70% of patients with ANCA-associated vasculitis (AAV) develop GN, with 26% progressing to ESKD. Diagnostic-grade and noninvasive tools to detect active renal inflammation are needed. Urinary soluble CD163 (usCD163) is a promising biomarker of active renal vasculitis, but a diagnostic-grade assay, assessment of its utility in prospective diagnosis of renal vasculitis flares, and evaluation of its utility in proteinuric states are needed. METHODS: We assessed a diagnostic-grade usCD163 assay in (1) a real-world cohort of 405 patients with AAV and 121 healthy and 488 non-AAV disease controls; (2) a prospective multicenter study of 84 patients with potential renal vasculitis flare; (3) a longitudinal multicenter cohort of 65 patients with podocytopathy; and (4) a cohort of 29 patients with AAV (with or without proteinuria) and ten controls. RESULTS: We established a diagnostic reference range, with a cutoff of 250 ng/mmol for active renal vasculitis (area under the curve [AUC], 0.978). Using this cutoff, usCD163 was elevated in renal vasculitis flare (AUC, 0.95) but remained low in flare mimics, such as nonvasculitic AKI. usCD163's specificity declined in patients with AAV who had nephrotic-range proteinuria and in those with primary podocytopathy, with 62% of patients with nephrotic syndrome displaying a "positive" usCD163. In patients with AAV and significant proteinuria, usCD163 normalization to total urine protein rather than creatinine provided the greatest clinical utility for diagnosing active renal vasculitis. CONCLUSIONS: usCD163 is elevated in renal vasculitis flare and remains low in flare mimics. Nonspecific protein leakage in nephrotic syndrome elevates usCD163 in the absence of glomerular macrophage infiltration, resulting in false-positive results; this can be corrected with urine protein normalization.
Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/urina , Antígenos CD/urina , Antígenos de Diferenciação Mielomonocítica/urina , Idoso , Idoso de 80 Anos ou mais , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/diagnóstico , Biomarcadores , Diagnóstico Diferencial , Progressão da Doença , Diagnóstico Precoce , Reações Falso-Positivas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Síndrome Nefrótica/urina , Estudos Prospectivos , Proteinúria/urina , Receptores de Superfície Celular , Valores de Referência , Método Simples-CegoRESUMO
Serological assays have been widely employed during the coronavirus disease 2019 (COVID-19) pandemic to measure antibody responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and to track seroconversion in populations. However, currently available assays do not allow determination of neutralization capacity within the assay protocol. Furthermore, commercial serology assays have a high buy-in cost that is inaccessible for many research groups. We have replicated the serological enzyme-linked immunosorbent assay for the detection of SARS-CoV-2 antibody isotypes, developed at the Icahn School of Medicine at Mount Sinai, New York. Additionally, we have modified the protocol to include a neutralization assay with only a minor modification to this protocol. We used this assay to screen local COVID-19 patient sera (n = 91) and pre-COVID-19 control sera (n = 103), and obtained approximate parity with approved commercial anti-nucleoprotein-based assays with these sera. Furthermore, data from our neutralization assay closely aligns with that generated using a spike-based pseudovirus infection model when a subset of patient sera was analyzed.
Assuntos
Enzima de Conversão de Angiotensina 2/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Anticorpos Antivirais/sangue , COVID-19/diagnóstico , COVID-19/epidemiologia , Teste Sorológico para COVID-19 , Ensaio de Imunoadsorção Enzimática , Células HEK293 , Humanos , Pandemias , SARS-CoV-2/isolamento & purificação , SoroconversãoRESUMO
BACKGROUND: Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces a complex antibody response that varies by orders of magnitude between individuals and over time. METHODS: We developed a multiplex serological test for measuring antibodies to 5 SARS-CoV-2 antigens and the spike proteins of seasonal coronaviruses. We measured antibody responses in cohorts of hospitalized patients and healthcare workers followed for up to 11 months after symptoms. A mathematical model of antibody kinetics was used to quantify the duration of antibody responses. Antibody response data were used to train algorithms for estimating time since infection. RESULTS: One year after symptoms, we estimate that 36% (95% range, 11%-94%) of anti-Spike immunoglobulin G (IgG) remains, 31% (95% range, 9%-89%) anti-RBD IgG remains, and 7% (1%-31%) of anti-nucleocapsid IgG remains. The multiplex assay classified previous infections into time intervals of 0-3 months, 3-6 months, and 6-12 months. This method was validated using data from a seroprevalence survey in France, demonstrating that historical SARS-CoV-2 transmission can be reconstructed using samples from a single survey. CONCLUSIONS: In addition to diagnosing previous SARS-CoV-2 infection, multiplex serological assays can estimate the time since infection, which can be used to reconstruct past epidemics.
Assuntos
Anticorpos Antivirais/sangue , COVID-19/sangue , COVID-19/imunologia , Testes Sorológicos/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Formação de Anticorpos , Especificidade de Anticorpos , COVID-19/epidemiologia , Feminino , França/epidemiologia , Humanos , Imunoglobulina G/sangue , Cinética , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/imunologia , Sensibilidade e Especificidade , Estudos Soroepidemiológicos , Adulto JovemRESUMO
Objectives: The immunological and inflammatory changes following acute COVID-19 are hugely variable. Persistent clinical symptoms following resolution of initial infection, termed long COVID, are also hugely variable, but association with immunological changes has not been described. We investigate changing immunological parameters in convalescent COVID-19 and interrogate their potential relationships with persistent symptoms. Methods: We performed paired immunophenotyping at initial SARS-CoV-2 infection and convalescence (n=40, median 68 days) and validated findings in 71 further patients at median 101 days convalescence. Results were compared to 40 pre-pandemic controls. Fatigue and exercise tolerance were assessed as cardinal features of long COVID using the Chalder Fatigue Scale and 6-minute-walk test. The relationships between these clinical outcomes and convalescent immunological results were investigated. Results: We identify persistent expansion of intermediate monocytes, effector CD8+, activated CD4+ and CD8+ T cells, and reduced naïve CD4+ and CD8+ T cells at 68 days, with activated CD8+ T cells remaining increased at 101 days. Patients >60 years also demonstrate reduced naïve CD4+ and CD8+ T cells and expanded activated CD4+ T cells at 101 days. Ill-health, fatigue, and reduced exercise tolerance were common in this cohort. These symptoms were not associated with immune cell populations or circulating inflammatory cytokines. Conclusion: We demonstrate myeloid recovery but persistent T cell abnormalities in convalescent COVID-19 patients more than three months after initial infection. These changes are more marked with age and are independent of ongoing subjective ill-health, fatigue and reduced exercise tolerance.
Assuntos
Envelhecimento/fisiologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , SARS-CoV-2/fisiologia , Adulto , Fatores Etários , Idoso , Estudos de Coortes , Convalescença , Feminino , Humanos , Imunofenotipagem , Estudos Longitudinais , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , PandemiasRESUMO
Rationale: Much is known about the acute infective process of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative virus of the coronavirus disease (COVID-19) pandemic. The marked inflammatory response and coagulopathic state in acute SARS-CoV-2 infection may promote pulmonary fibrosis. However, little is known about the incidence and seriousness of post-COVID-19 pulmonary pathology. Objectives: To describe the respiratory recovery and self-reported health after infection at the time of outpatient attendance. Methods: Infection severity was graded into three groups: 1) not requiring admission, 2) requiring hospital admission, and 3) requiring intensive care unit care. Participants underwent chest radiography and a 6-minute walk test (6MWT). Fatigue and subjective return to health were assessed, and concentrations of CRP (C-reactive protein), IL-6 (interleukin-6), sCD25 (soluble CD25), and D-dimer were measured. The associations between initial illness and abnormal chest X-ray findings, 6MWT distance, and perception of maximal exertion were investigated. Results: A total of 487 patients were offered an outpatient appointment, of whom 153 (31%) attended for assessment at a median of 75 days after diagnosis. A total of 74 (48%) had required hospital admission during acute infection. Persistently abnormal chest X-ray findings were seen in 4%. The median 6MWT distance covered was 460 m. A reduced distance covered was associated with frailty and length of inpatient stay. A total of 95 (62%) patients believed that they had not returned to full health, whereas 47% met the case definition for fatigue. Ongoing ill health and fatigue were associated with an increased perception of exertion. None of the measures of persistent respiratory disease were associated with initial disease severity. Conclusions: This study highlights the rates of objective respiratory disease and subjective respiratory symptoms after COVID-19 and the complex multifactorial nature of post-COVID-19 ill health.