Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(15)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39123926

RESUMO

The wide-ranging applications of the Internet of Things (IoT) show that it has the potential to revolutionise industry, improve daily life, and overcome global challenges. This study aims to evaluate the performance scalability of mature industrial wireless sensor networks (IWSNs). A new classification approach for IoT in the industrial sector is proposed based on multiple factors and we introduce the integration of 6LoWPAN (IPv6 over low-power wireless personal area networks), message queuing telemetry transport for sensor networks (MQTT-SN), and ContikiMAC protocols for sensor nodes in an industrial IoT system to improve energy-efficient connectivity. The Contiki COOJA WSN simulator was applied to model and simulate the performance of the protocols in two static and moving scenarios and evaluate the proposed novelty detection system (NDS) for network intrusions in order to identify certain events in real time for realistic dataset analysis. The simulation results show that our method is an essential measure in determining the number of transmissions required to achieve a certain reliability target in an IWSNs. Despite the growing demand for low-power operation, deterministic communication, and end-to-end reliability, our methodology of an innovative sensor design using selective surface activation induced by laser (SSAIL) technology was developed and deployed in the FTMC premises to demonstrate its long-term functionality and reliability. The proposed framework was experimentally validated and tested through simulations to demonstrate the applicability and suitability of the proposed approach. The energy efficiency in the optimised WSN was increased by 50%, battery life was extended by 350%, duplicated packets were reduced by 80%, data collisions were reduced by 80%, and it was shown that the proposed methodology and tools could be used effectively in the development of telemetry node networks in new industrial projects in order to detect events and breaches in IoT networks accurately. The energy consumption of the developed sensor nodes was measured. Overall, this study performed a comprehensive assessment of the challenges of industrial processes, such as the reliability and stability of telemetry channels, the energy efficiency of autonomous nodes, and the minimisation of duplicate information transmission in IWSNs.

2.
Sensors (Basel) ; 22(14)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35891024

RESUMO

The Internet of Things (IoT) technology and its applications are turning real-world things into smart objects, integrating everything under a common infrastructure to manage performance through a software application and offering upgrades with integrated web servers in a timely manner. Quality of life, the green economy, and pollution management in society require comprehensive environmental monitoring systems with easy-to-use features and maintenance. This research suggests implementing a wireless sensor network with embedded sensor nodes manufactured using the Selective Surface Activation Induced by Laser technology. Such technology allows the integration of electrical circuits with free-form plastic sensor housing. In this work, a low-cost asynchronous web server for monitoring temperature and humidity sensors connected to the ESP32 Wi-Fi module has been developed. Data from sensor nodes across the facility are collected and displayed in real-time charts on a web server. Multiple web clients on the same network can access the sensor data. The energy to the sensor nodes could be powered by harvesting energy from surrounding sources of electromagnetic radiation. This automated and self-powered system monitors environmental and climatic factors, helps with timely action, and benefits sensor design by allowing antenna and rf-circuit formation on various plastics, even on the body of the device itself. It also provides greater flexibility in hardware modification and rapid large-scale deployment.


Assuntos
Qualidade de Vida , Tecnologia sem Fio , Monitoramento Ambiental , Humanos , Monitorização Fisiológica , Tecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA